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How do social identities and social injustice impact knowledge production in a group? Does

diversity improve group learning? In what ways? How do we promote such diversity? These

are the kinds of questions I tackle in my dissertation, which is situated at the intersection of

social epistemology, network modeling, and the philosophy of race and gender.

A theme running through my findings is that having a diversity of approaches within a group

can facilitate the production of better knowledge. I propose three novel mechanisms that

lead to epistemically-beneficial diversity and use agent-based models to investigate their often

surprising downstream consequences. I show that (1) marginalized social groups sometimes

develop better beliefs because their testimony is devalued by dominant groups; (2) industrial

scientists can gain epistemic benefits by failing to share their research; and (3) a group can

ultimately learn better when its members explore many, possibly sub-optimal, solutions to

a problem instead of always choosing the best available solution.
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Introduction

How do social identities and social injustice impact knowledge production in a group? Does

diversity improve group learning? In what ways? How do we promote such diversity? These

are the kinds of questions I tackle in my dissertation, which is situated at the intersection of

social epistemology, network modeling, and the philosophy of race and gender.

A theme running through my findings is that having a diversity of approaches within a group

can facilitate the production of better knowledge. I propose three novel mechanisms that

lead to epistemically-beneficial diversity and use agent-based models to investigate their often

surprising downstream consequences. I show that (1) marginalized social groups sometimes

develop better beliefs because their testimony is devalued by dominant groups; (2) industrial

scientists can gain epistemic benefits by failing to share their research; and (3) a group can

ultimately learn better when its members explore many, possibly sub-optimal, solutions to

a problem instead of always choosing the best available solution.

In the first chapter, “Epistemic Advantage on the Margin,” I consider situations where a

dominant group ignores or devalues evidence from a marginalized group. I find that the

marginalized group develops better beliefs more often and faster than the dominant group,

and in some cases even outperforms a community without epistemic injustice. When the

dominant group ignores data, they take longer to explore the options. The marginalized

group, however, learns from their own experience and the exploration of the dominant group,

1



and ultimately benefits from this epistemic diversity. These results support a contested

standpoint epistemology thesis that marginalized groups can know better, by connecting

it to a more widely discussed phenomenon that marginalized groups’ testimony is often

devalued.

In the second chapter, “Withholding Knowledge,” I argue that there are epistemic incentives

for subgroups of scientists to unilaterally withhold evidence from the larger community. In so

doing, they develop better beliefs more frequently and faster than the rest of the community.

The withholding scientists gain epistemic advantage for similar reasons as the marginalized

agents in chapter one. I build two new models from different modeling paradigms to provide

robustness tests for these findings. I further analyze the scientific sharing dynamics from

a game theoretic perspective and show that groups face an epistemic prisoner’s dilemma:

they learn worst when others withhold evidence, best when they unilaterally withhold, and

in between when everyone shares.

In the third chapter, “Better than Best,” I show that a group can learn better when its

members do not always employ the best available solution to a problem. If group members

randomly select a better solution than their own, they preserve a diversity of approaches

that ultimately makes them more successful. In a slogan, “better” beats “best.”

My findings generate a range of potential behavioral and policy interventions for empirical

testing. For instance, dominant groups may epistemically benefit from listening to previously

marginalized voices; the public may epistemically benefit from policies requiring industry to

share research; and institutions may epistemically benefit from policies that preserve non-

optimal but promising diverse perspectives.

On top of the thematic unification, the three chapters are linked methodologically. This

dissertation utilizes two fundamentally different modeling paradigms: the bandit problem

and the NK landscape problem, both combined with network modeling techniques. The

2



bandit problem is featured in Chapters 1 and 2, and the NK landscape problem is featured

in Chapters 2 and 3. These two models represent different types of scientific and social

inquiry. In the bandit model agents figure out which of the two probabilistic epistemic

options is better, representing, e.g., clinical doctors finding out the efficacy of two different

drugs by conducting trials. In the NK landscape model, agents search in a vast epistemic

landscape with multiple “peaks,” representing, e.g., researchers adopting different approaches

to solve a problem. Together these models represent a wide array of possible problems that

different epistemic communities face.

Despite the differences, at the core of both modeling paradigms, there is a trade-off between

exploration and exploitation: Do agents exploit the solutions that they currently have, or

do they explore other possibilities in the hope of finding better solutions? This trade-off

explains why having diverse approaches in a community is beneficial to social learning. If

a community, for whatever reasons, consists of members who are testing a diverse range of

options, then agents can have access to data from options they have not explored, while

continuing testing their own options. This dissertation, then, proposes some of the reasons

that can lead to epistemically-beneficial diversity of practice, and test the robustness of these

mechanisms in two different modeling paradigms. This kind of trade-off between exploration

and exploitation is likely present in many of our endeavors, since we humans are cognitively

and computationally limited. Insofar as that is right, the results I present will likely hold

more broadly, even though I only test the mechanisms in two modeling paradigms here.1

Although not officially included, several projects I contribute to over the years serve as

natural companion pieces to this dissertation. In Wu and O’Connor (2023), we evaluate dif-

ferent mechanisms for generating epistemically-beneficial diversity in scientific communities,

keeping in mind practical and ethical considerations. In Wu et al. (2023), we offer a brief

overview of formal models that treat science as a cultural evolutionary system, and consider

1I am, after all, cognitively and computationally limited too!

3



how distinct cultural patterns emerge in scientific communities by appealing to mechanisms

of cultural transmission and social learning. Both articles include extensive discussions of

models and mechanisms proposed in this dissertation. In an ongoing project with Liam Kofi

Bright and another with Sina Fazelpour, Juan Paris, Hannah Rubin, and Courtney Sharpe,

we explore other kinds of injustice in our society that can be represented by asymmetries in

network relations, and explore their consequences. These projects serve as natural extensions

to Chapter 1. Readers may also be interested in a recent blog post I wrote introducing the

results from the first two chapters of this dissertation (Wu, 2023b).
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Chapter 1

Epistemic Advantage on the Margin

What people of color quickly come to see—in a
sense, the primary epistemic principle of the
racialized social epistemology of which they are
the object—is that they are not seen at all.

Mills (2007, 17)

1.1 Introduction

Social epistemologists working on race or gender have written extensively on dominant so-

cial groups’ widespread practice of ignoring or devaluing testimony arising from marginalized

groups. For example, Dotson (2011) uses epistemic quieting to describe situations in which

an audience, often from a dominant social background, fails to identify a speaker, often from

a marginalized background, as a knower. Other forms of this practice include epistemic

smothering (Dotson, 2011), testimonial injustice (Fricker, 2007), and a form of white igno-

rance (Mills, 2007). Central to all these cases is a failure of testimonial reciprocity between

a speaker and an audience.1 Moreover, this failure of reciprocity is often unidirectional

1For more on testimonial reciprocity, see Hornsby (1995).
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because members of marginalized groups cannot afford to engage in the devaluation and

ignoration of testimony from the dominant group, due to sociopolitical power imbalance (c.f.

Mills, 2007, Section 2). I call the situation in which the dominant group ignores testimony

from the marginalized group one-sided testimonial ignoration, and the situation in which the

dominant group devalues testimony from the marginalized group one-sided testimonial de-

valuation. Together, they constitute a unidirectional failure of testimonial reciprocity. That

such situations occur is widely claimed in social epistemology, and some authors (e.g. Wylie

(2003); Mills (2007); Saint-Croix (2020)) regard the unidirectional failure of testimonial reci-

procity as a key claim of standpoint epistemology, which is a strand of social epistemology

that takes as epistemically salient the social positions (or standpoints) that knowers are

situated in.2

Besides the unidirectional failure of testimonial reciprocity, another key claim of standpoint

epistemology, most notably advocated by Hartsock (1983), contends that “certain [socially

marginalized] locations themselves foster more accurate beliefs, not only concerning one’s

own social position, but also the social and natural world more broadly” (Saint-Croix, 2020,

493, emphasis in the original). This claim is often called the inversion thesis, after the inverse

relation between knowers’ sociopolitical power and epistemic privilege. The interpretations of

and justifications for the inversion thesis are often highly contested (see, e.g., Wylie (2003);

Intemann (2010); Toole (2020)). In what follows, I propose a possible mechanism that

gives rise to the inversion thesis, by connecting it to the other key claim mentioned above.

2There are two other distinct forms of epistemic marginalization discussed in the standpoint epistemol-
ogy literature that are worth mentioning here. First, one might think that sometimes marginalized groups
are not even included in the epistemic community in such a way that they can provide testimony/evidence.
Second, one might think that sometimes marginalized groups do not have access to dominant groups’ testi-
mony/evidence at all (Narayan, 1988). Interestingly, the base model on one-sided testimonial ignoration that
I will present in the paper can be reinterpreted to model this first alternative form of epistemic marginaliza-
tion as well. This is because the asymmetry in evidence updating dynamics in the model can be interpreted
both as marginalized agents providing testimony that is subsequently ignored by the dominant group, and
as marginalized agents not providing testimony to dominant agents at all (either due to unwillingness or due
to epistemic exclusion). These are two very different forms of epistemic marginalization, which interestingly
share the same structural form. The models I present in this paper unfortunately do not apply to the second
alternative form of epistemic marginalization. I address this limitation in more detail in §1.5 and leave the
additional modeling work for future research. Thanks to an anonymous reviewer for raising these points.
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Specifically, I ask, is it the case that simply by virtue of their testimony being ignored or

devalued, members of the marginalized group gain epistemic advantages that foster more

accurate beliefs?

I use computer simulations to investigate this question. In my models, members of the

marginalized group end up with a number of epistemic advantages, by virtue of their testi-

mony being ignored or devalued by the dominant group. Failure of testimonial reciprocity

can hence render the inversion thesis true. Though the models I use are highly idealized

and abstract, I argue that my simulations provide one possible explanation for the inversion

thesis, by casting it as a consequence of the unidirectional failure of testimonial reciprocity.3

I construct three models to support my argument. My models are adapted from the network

epistemology framework developed by Bala and Goyal (1998) and introduced to philosophy of

science by Zollman (2007).4 In all previous implementations of the model in philosophy, the

network connections are reciprocal, meaning that if agent Y updates on agent Z’s evidence,

then Z updates on Y ’s evidence in the same fashion. In contrast, the network connections

in my models are not reciprocal when agents interact with outgroup members.

I start with a base model of one-sided testimonial ignoration. Here, dominant agents ignore

testimony shared by marginalized agents, but marginalized agents update on all testimony

shared with them.5 I find that marginalized agents arrive at the true belief more frequently

and faster, and select epistemically better actions during the learning process, as compared

to dominant agents. Moreover, marginalized agents arrive at the true belief more frequently

3See Bokulich (2014) for discussions on how-possibly explanations and how-actually explanations. More-
over, though my results may inform real world processes, I do not claim that unidirectional failure of testi-
monial reciprocity necessarily underlies all real world scenarios where the inversion thesis holds. I leave open
the possibility that other phenomena may also lead to the inversion thesis. That is, I provide a sufficient
condition for the inversion thesis under reasonable assumptions, but not a necessary condition.

4Variations of this model have seen fruitful applications in the philosophy of science and social episte-
mology, e.g. Zollman (2007), Zollman (2010), Mayo-Wilson et al. (2011), and O’Connor and Weatherall
(2018).

5I use “marginalized agents” to denote “members of the marginalized group,” and “dominant agents” to
denote “members of the dominant group.”
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even compared to agents in a model with perfect testimonial reciprocity, and dominant

agents do so less frequently. The entire community in this model learns the true belief less

frequently and more slowly than the community with perfect testimonial reciprocity. These

results show that the one-sided testimonial ignoration practiced by the dominant group is

epistemically detrimental to its members and to the entire community, but is epistemically

advantageous to the marginalized group.

I then construct two variations of the base model—one for one-sided testimonial ignoration

with the homophilic network structure and one for one-sided testimonial devaluation. I

use homophilic networks—where agents prefer to connect with ingroup members—because

many real world networks are homophilic (McPherson et al., 2001) and because these net-

works allow me to vary agents’ information access based on group membership. I find that,

regardless of their information access, members of the marginalized group arrive at the true

belief more frequently than the dominant group in homophilic networks. The degree to

which marginalized agents gain other epistemic advantages, such as their speed of learning,

depends on their information access. Finally, I build a model of one-sided testimonial devalu-

ation, where dominant agents discount, rather than ignore, testimony from the marginalized

group. Here, marginalized agents arrive at the true belief faster and select epistemically

better actions during the learning process, as compared to dominant agents.6

The paper will be organized as follows. §1.2 introduces and motivates the base model, as

well as presents the key results. §1.3 discusses the first variation with homophilic network

structures. §1.4 presents the second variation on testimonial devaluation. §1.5 discusses how

my results relate to standpoint epistemology. In closing, I will briefly note how my models, by

virtue of introducing nonreciprocity to network connections, complicate the understanding

and applications of previous network results.

6Due to model design, the marginalized and dominant groups necessarily learn the true belief with the
same frequency.
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1.2 The Base Model: one-sided testimonial ignoration

1.2.1 The Model

The base model consists of a network of agents who are presented with the same learning

problem. Agents are tasked with learning which of the two available options is better, by

updating on evidence from their neighbors and themselves. The network has two subgroups—

the marginalized group and the dominant group—with their members distinguished only

by the updating dynamics. Dominant agents only update on evidence shared by ingroup

members, whereas marginalized agents update on evidence shared by everyone.

The Bandit Problem

To motivate my model, let us consider a toy example. The scenario is not meant to be

realistic, but rather to illustrate the cases to which my models are applicable in a high-level

way. Suppose that an organization hires for a position, and eventually offers the position to

a candidate from a particular social group X.7 Suppose further that this is not the first time

that a candidate from X is hired, and Hana, a consultant who has access to some details

of the case, is tasked to investigate why the candidate was hired. There is an available

individualistic meritocratic explanation, A, according to which a candidate from X is hired

because they are the best at doing the job out of all candidates. Explanation A is well

understood, but is only known to succeed about half the time when applied to similar

cases. For instance, there might have been multiple candidates who were equally good

at the job but only one was hired. Explanation A is all right, but is inadequate as a

catch-all explanation. Recently, a new explanation called structural bias explanation, B, is

also hypothesized to account for this kind of social phenomena. Explanation B says that a

7To make it feel more concrete , readers can substitute “X” with “White,” “Male,” “Able-bodied,” etc.
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candidate from social group X is hired because during the hiring process there was structural

bias against candidates who are not members of X. Explanation B is not well understood, and

the community is unsure whether it is better or worse than A. Suppose that Hana happens

to have the initial belief that B would be better than A in this case, so she decides to solicit

evidence to test B by, for instance, investigating whether the company’s job description

contains biased language.8 She then learns from the evidence she discovers, forms posterior

beliefs on the explanations, and continues to test B if she thinks that it is better. If she

keeps getting good evidence for B, eventually she should believe that B is better than A with

overwhelming confidence. Or, if the evidence Hana gets for B is unsatisfactory, she would

give up on testing B because she thinks it is inferior to the available alternative.

The above scenario can be modeled by what is called a two-armed bandit problem. The name

“bandit problem” comes from applying it to a gambling scenario, where a gambler, facing a

many-armed “bandit,” aims at maximizing their profit and choosing the best-performing arm

by interacting with the machine. Here is how the problem is set up for one agent. For every

time step (or “round”), the agent selects between two actions: A and B, and gets payoffs

based on their choice. Each of the actions is associated with a fixed probability of success.

The success rate for A is well-known to the agent, and is set to .5. The success rate for B,

however, is uncertain to the agent: the agent knows that action B is either slightly better

than A, with a success rate of .5+ ε, or it is slightly worse than A, at .5− ε. When an action

generates success, the agent receives a payoff of 1, and they receive no payoffs otherwise. In

the models I implement, unbeknownst to the agents, I set the success rate of B to .5 + ε.

The goal for the agent is to determine which action has a higher success rate by learning

from their own actions and payoffs.9

8Here we stipulate that, depending on what hypotheses to test, Hana performs different actions, which
then provide Hana with evidence for the chosen hypothesis. Furthermore, Hana has limited resources to
test explanations, so she is incentivized to test the better explanation each round. See §1.5 for potential
limitations of this stipulation.

9Agents learn by applying Bayes’ rule. For more detail, see §1.2.1.
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Thus constructed, the two-armed bandit problem is suitable to model learning situations

where there are two competing choices. This model is often applied in epistemology to

scenarios with two competing theories, explanations, or hypotheses available for a given

phenomenon. Besides Hana’s quest to figure out which of the two explanations best accounts

for the company’s hiring decision, another classic application of the model is the clinical trials

of drugs. Here, action A represents a drug that is well-understood, and the doctor’s goal is

to figure out whether a new drug, B, is better or worse than A.

I use the bandit problem because we can set the true state of the world one way and ob-

serve how well the agent learns the true belief, which naturally models epistemic advantage.

Moreover, when we cast the bandit problem in a social setting, the evidence sharing dynamic

becomes a suitable place to implement the unidirectional failure of testimonial reciprocity,

as I will discuss shortly.

Going Social

In many real cases, learning is not an isolated, individualistic activity. Doctors are often

not alone when they test new drugs; they may be in contact with other doctors in the same

clinical trials. Hana may also have a team of consultants on the same case.

When multiple individuals figure out the same problem together, they can share evidence

and incorporate others’ evidence in their own learning. To model this, I introduce a network

of agents who face the same two-armed bandit problem. Each agent is connected to some or

all of the other agents and I call the agents they are connected to their “neighbors.”10 In each

round, each agent selects their action based on their belief in the proposition “B is better

than A,” obtains evidence from their action, shares their evidence with their neighbors, and

10A network structure describes how agents are connected to each other.
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updates on the evidence they receive. Further, because the evidence is passed on between

agents, a piece of evidence is a form of testimony—it has a speaker and an audience.

Zollman (2007) builds a model just like this. He simulates the model on different network

structures and finds, perhaps counterintuitively, that a more sparsely connected community

has epistemic advantages over a more connected one, in the sense that the former learns the

true belief more frequently. However, a more sparsely connected community also learns the

truth more slowly. Zollman’s findings are collectively dubbed “the Zollman effect.” They

uncover a trade-off between the speed and accuracy in social learning. The effect will become

relevant later in two ways. First, I will use the reasoning behind the effect to explain some

of my modeling results. Second, I will argue that my results complicate the interpretation

and application of the Zollman effect.

De-idealizing Testimonial Relationships

In Zollman (2007)’s model, if two agents are connected, then they share their evidence

with each other and fully update on the evidence they receive. That every agent treats all

testimony they receive equally is, of course, an idealization, and perhaps an unwarranted one.

Social epistemologists working on race and gender, notably standpoint epistemologists, have

written extensively on dominant social groups’ widespread practice of silencing testimony

from marginalized perspectives.

Recall the epigraph of this paper. Mills (2007) argues that the primary epistemic principle

of a racialized social epistemology is that people of color are not seen as knowers. In the

same chapter, Mills gives the example of Kant’s dismissal of a Black carpenter’s epistemic

credibility: “and it might be, that there were something in this which perhaps deserved to

be considered; but in short, this fellow was quite black from head to foot, a clear proof

that what he said was stupid” (Kant, 1960, 113, emphasis in the original, qtd. Mills 2007,
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32). Moreover, several authors point out that people of color’s testimony is often not taken

seriously unless they have white authenticators (Mills, 2007; Fatima, 2017; Bright, 2023), and

women’s testimony is often ignored until repeated by men, a phenomenon dubbed “hepeating”

(Deo, 2019). It is hypothesized that Ida B. Wells-Barnett (2012), when arguing against

lynching in 1895, only includes evidence from white sources because her intended white

audience would trust these sources rather than the testimony of Black people (Bright, 2023).11

As a contemporary example, Deo (2019) conducts an empirical study on how race and gender

influence legal academia,12 and finds that “most women in the [study] sample, regardless of

racial/ethnic background, have endured silencing, harrassment, mansplaining, hepeating,

and gender bias” (Deo, 2019, 47). For instance, one study participant has “counted over

ten times on [her] faculty where [she has] said something and [nobody has responded; then]

a male faculty has repeated it and another male colleague has said, ’Good idea!” ’ (Deo,

2019, 45). Writing about her experience as a woman of color in the predominantly white

and male field of professional philosophy (an experience that corroborates Deo’s findings),

Fatima (2017, 151) claims that “if the only way that a woman of color’s testimony is given

any uptake is if dominant members of academia verify it, then we have already discounted

the epistemic credibility of the speaker.” The existence and prevalence of silencing testimony

from marginalized perspectives is widely recognized.

Importantly, this dismissal of testimony is one-sided. Mills (2007, 17) argues that “often

for their very survival, blacks have been forced to become lay anthropologists, studying

the strange culture, customs, and mind-set of the ‘white tribe’ that has such frightening

power over them, that in certain time periods can even determine their life or death on a

whim.” Mills quotes Baldwin’s brutally honest line, “I have spent most of my life, after all,

11Though Bright (2023) eventually favors an alternative, statistically-based explanation for Wells-
Barnett’s decision, the original hypothesis is still plausible as testimonial ignoration was undoubtedly salient
at the time.

12In this comprehensive study, Deo (2019) presents quantitative and qualitative results from a core sample
comprising almost 10% of all US women of color law professors, together with a comparison sample of white
or men of color law professors.
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watching white people and outwitting them, so that I might survive” (Baldwin, 1993, 217,

qtd. Mills 2007, 18). In Deo (2019)’s study, a woman of color participant admits that she

always acquiesces to requests from university administration, sometimes even unreasonable

ones, because she fears professional repercussions if she declines. In order to survive in a

hegemony dominated by other people, marginalized folks cannot afford to ignore testimony

and demands from the dominant group.

Given this, it is appropriate to de-idealize the testimonial relationships in the model to in-

corporate one-sided testimonial ignoration.13 I implement testimonial ignoration by dividing

the population into two groups: the marginalized group and the dominant group. Marginal-

ized agents update on evidence from all their neighbors, but dominant agents only update on

evidence shared by ingroup neighbors.14 Here, we have a failure of testimonial reciprocity—

marginalized agents take testimony from the dominant group as they are meant to be taken,

but dominant agents fail to do so reciprocally. To bring us back to the hiring scenario, there

might be a few consultants who do not trust Hana’s evidence, as (supposedly) Hana is not

a member of the social group X and, for them, Hana might have bias against X.15

13I will not address how we identify situations with one-sided testimonial ignoration. Dotson (2011) has
gracefully tackled this question.

14One might worry that the evidence I presented in the previous paragraph only supports the claim that
insofar as marginalized agents receive evidence from dominant agents, they cannot afford to ignore the evi-
dence, but not so much that marginalized agents receive all the evidence from their dominant neighbors. This
is a very fair concern, especially given that sometimes marginalized knowers are excluded from participating
in epistemic communities (more in §1.5). The base model I present in this section makes the idealizing
assumption that marginalized agents receive evidence from all their neighbors. However, one can reinterpret
the first variation presented in §1.3 with homophilic networks, where poutgroup is small, as modeling some
version of epistemic exclusion. Here, marginalized agents only have very sparse evidential access to the dom-
inant group. We can think of this as the poignant situation where a small number of marginalized knowers
are invited to participate in dominant epistemic spaces, but their testimony is still ignored. Thanks to an
anonymous reviewer for raising this concern.

15For a more realistic example, consider Blanche, a Black fill-in maid for a white family in the novel
Blanche on the Lam (Neely, 1993). As a lower class Black woman, Blanche’s epistemic credibility is not fully
recognized by other members of the family that employs her; but Blanche continues to listen to and in on
the family members during her work. This eventually allows Blanche to gather enough evidence and solve
a series of murder mysteries in the family. This example of Blanche’s standpoint is discussed at length in
Wylie (2003). Though the example of Blanche is fictional, the phenomenon that Black domestic helpers have
their epistemic credibility suppressed by their employers, but still gain an outsider-within status in white
middle-class families is discussed in detail in Collins (2002).
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Further Technical Details

A few technical details are in order before I present my results.

Initiation

I set the success rate for A to be .5, and the success rate for B to be .5+ε. At the start of the

simulation, every agent is assigned a credence randomly selected from a uniform distribution

between 0 and 1 (exclusive). The credence reflects their belief in the proposition “B is better

than A.”

A Typical Round

At the start of every round, each agent selects one of the two actions—if their credence is

> .5, they choose action B; otherwise they choose A. The agent then performs the chosen

action a number of times, n, and receives payoffs.

Then, each agent uses Bayes’ rule to update their credence based on both their own expe-

rience and the experiences of their neighbors. For example, suppose that ε = .1 (i.e. the

success rate of B is .6). If an agent has prior credence of .7 that B is better than A, and pulls

action B one time, which succeeds in generating a payoff of 1, then their posterior credence

after updating on their own experience is

P (H|E) = P (E|H)P (H)
P (E|H)P (H)+P (E|¬H)P (¬H)

= .6×.7
.6×.7+.4×.3 = .78.

Here, H (hypothesis) stands for “B is better than A,” and E (evidence) is “taking action B

once yields 1 payoff.” It is worth noting that, whether or not the action succeeds in generating

a payoff, performing action A will not change the posterior credence. To see that, we observe
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that P (E ′|H) = P (E ′|¬H) = P (E ′′|H) = P (E ′′|¬H) = .5, where E ′ is “taking action A

once yields 1 payoff,” and E ′′ is “taking action A once yields 0 payoffs.” Consequently,

P (H|E ′) = P (H|E ′′) = P (H). Agents similarly update on neighbors’ evidence by applying

Bayes’ rule. Note that dominant agents only update on evidence from ingroup neighbors

and marginalized agents update on evidence from all neighbors.

After each agent finishes updating, we increase the time step by 1 and repeat the procedure

for a typical round.

End of Learning

There are three stable end states for this model:

• Community convergence to the true belief: every agent has a credence of > .99 that
B is better than A. In this state, it is increasingly unlikely that agents would switch
from B to A. Everyone succeeds in learning.

• Community convergence to the false belief: every agent has a credence of ≤ .5 that B
is better than A. In this state, nobody would be actively testing B. Everyone fails in
learning.

• Polarization: every marginalized agent has a credence of > .99 that B is better than
A, and every dominant agent has a credence of ≤ .5. In this state, no dominant agent
would be actively testing B. Every marginalized agent succeeds in learning, every
dominant agent fails in learning, and the entire community fails in learning.

Due to one-sided testimonial ignoration, polarization is a new end state for my model com-

pared to Zollman (2007). In this state, even though marginalized agents are still testing

action B, their testimony is ignored by dominant agents. We have a stable situation where

the agents’ beliefs are split along group membership. It is worth noting that a polarization

with the opposite distribution of credence cannot be stable, since in this state, marginalized

agents would still update on evidence from dominant agents, and the model would evolve.

If the network reaches one of the stable end states, the community has finished learning.
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1.2.2 Results

I simulate this model using the following values for the key parameters, for 10, 000 runs each:

• Total number of agents (“size”) of the network (k) : 3, 6, 12, 18.

• Proportion of the marginalized group in the population(d): 1
6
, 1

3
, 1

2
, 2

3
.

• Number of pulls per round (n): 1, 5, 10, 20.

• Probability of B (PB): .51, .55, .6, .7, .8.

• Network structure: complete.16

For all parameter values, I run a comparison model with perfect testimonial reciprocity; this

is equivalent to the complete model from Zollman (2007). Moreover, all the results in this

paper are robust across all parameter values, unless otherwise noted.

I employ three ways to measure how well subgroups learn: the (1) frequency and (2) speed

at which subgroups learn the true belief, and the (3) frequency at which subgroup members

select the epistemically better action during the learning process. The marginalized group

holds epistemic advantages compared to the dominant group according to all three measures.

I measure how frequently a subgroup learns the true belief by calculating the proportion of

simulation runs (out of 10, 000 runs) where the subgroup succeeds in learning. This measure

captures how often an average agent of a given subgroup eventually learns the true belief.

Here, the marginalized group learns the true belief more frequently (Figure 1.1) because

polarization counts as success for marginalized agents and failure for dominant agents. As

long as there are simulation runs that end in polarization, the marginalized group would

learn better in this respect. In fact, for all parameter values, the marginalized group learns

the true belief more frequently.

16A network is complete when everyone is connected to everyone. The network structure here is complete
prior to adding one-sided testimonial ignoration.
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Figure 1.1: Base Model, PB = .6, n = 1, d = 1
3
, 10, 000 simulation runs.

A subgroup’s speed of learning the true belief is measured as follows. For each agent and

each of their successful runs, I document the earliest round after which the agent maintains

a credence of > .99. Call this an individual agent’s rounds to successful learning. Then, for

each subgroup, I compute the subgroup’s average rounds to successful learning by taking the

average of all individual agents’ rounds to successful learning, out of all successful simulation

runs and all agents in the subgroup. Unlike some previous measures of speed of learning,

here I only consider cases where the subgroup learns the truth.17 This measure represents

how long an average agent from a given subgroup takes to learn the true belief. Marginalized

agents learn the true belief faster (Figure 1.2) because they have access to more information

per round.

17My measure differs from previous ones in the literature. Different from Zollman (2007)’s “average time
to success,” I measure a subgroup’s speed of learning not by observing when the entire community reaches
the true belief, but by taking the average of individual agent’s rounds to successful learning. "Rounds to con-
sensus" in O’Connor and Weatherall (2018) measures the entire community’s rounds to consensus, regardless
of truth or falsity. In contrast, I only consider cases where the subgroup learns the truth. This measure
allows me to capture possible differences in the speed of successful learning between the two subgroups.
For instance, there could be possible variations in subgroups’ rounds to successful learning even when the
community converges to the true belief. Later, I will introduce another measure: the entire community ’s
average rounds to successful learning, which is the same as Zollman (2007)’s.
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Figure 1.2: Base Model, PB = .51, n = 10, d = 1
2
, 10, 000 simulation runs.

I measure how frequently subgroup members select the epistemically better action during

the learning process by calculating the average proportion of rounds that an agent of this

subgroup selects action B, out of all simulation runs and all agents in the subgroup, without

considering every agent’s selection at round 0.18 This measure captures how frequently an

average agent from a given subgroup chooses the epistemically better action during the

learning process. It is not surprising that marginalized agents select the better action more

frequently, since they also eventually learn the truth more frequently and faster.

So far, my results adhere to a basic empiricist intuition, that access to more information

provides epistemic advantages. However, the following results, together with results from

the first variation (§1.3), suggest that marginalized agents’ epistemic advantages cannot

solely be explained by having access to more information.

Compared with the community with perfect testimonial reciprocity, where all evidence is

fully updated by the receiver, the marginalized group in my model learns the true belief

18An agent’s action at round 0 only depends on their initial credence as randomly selected by a uniform
distribution. Including this round would add noise to the data, especially when agents learn very fast (when
PB and n are large).
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more frequently, and the entire community as well as the dominant group learns the true

belief less frequently (Figure 1.1). A marginalized agent holds this epistemic advantage

even though they update on as many pieces of evidence as an agent in the model with

perfect testimonial reciprocity. This is because in simulation runs that start with initially

unpromising results for action B,19 the community with perfect testimonial reciprocity would

quickly settle on action A, resulting in a convergence to the false belief. In my model, though

marginalized agents would change their actions quickly, the dominant agents would not due

to their limited information access. Consequently, the epistemically better action remains

active in the network for longer, making it more likely that marginalized agents would turn

around to correct their action. This is an instance of the Zollman effect, where more sparsely

connected network structures produce epistemic benefits.20

The entire community in my model learns the true belief less frequently than the community

with perfect testimonial reciprocity because a necessary condition for the former community

to learn the true belief is that the dominant group learns it. But the dominant group,

because of the one-sided testimonial ignoration, acts as an isolated model of size k · (1− d)

with perfect testimonial reciprocity.21 For models with perfect testimonial reciprocity, the

smaller the size of the network, the less frequently the community learns the true belief

(Zollman, 2007). The dominant group, and hence the entire community, learns the true

belief less frequently than the community of size k with perfect testimonial reciprocity.

Moreover, the entire community in my model learns the true belief more slowly than the

community with perfect testimonial reciprocity (Figure 1.3). The speed of successful learn-

19Because whether each action succeeds is probabilistic, these scenarios occur in my simulations.
20This result is robust with parameters such that the average rounds to successful learning for the entire

community is > 3 (i.e. excluding "easy" learning situations with large PB and n). One reason for the
non-robustness in the edge cases is related to the trade-off between the learning speed and learning accuracy.
For cases where the learning is really fast, the speed of successful learning is often very close between the
marginalized group and the community with perfect testimonial reciprocity, so their learning accuracy is also
comparable. Moreover, when agents finish their learning quickly, their learning accuracy is highly dependent
on their initial beliefs, which are randomly assigned and highly variable.

21Recall that k is the network size and d is the proportion of the marginalized group.
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Figure 1.3: Base Model, PB = .7, n = 5, d = 1
3
, 10, 000 simulation runs.

ing for the entire community is measured differently from the subgroups, to facilitate a

direct comparison with Zollman (2007)’s model. I first record, for each simulation run with

community success, the round at which the community finishes learning. I then define the

average rounds to successful learning for the entire community as the average of these rounds

out of all successful simulation runs. This measure captures how long an entire community

takes to learn the true belief. The entire community in my model learns the true belief

more slowly for a similar reason—the dominant group, as an isolated group with perfect

testimonial reciprocity of size k · (1 − d), learns the truth more slowly than a community

with perfect testimonial reciprocity of size k (Zollman, 2007).

Finally, the proportion of the marginalized group (d) impacts the degree of epistemic (dis-

)advantage. As d increases, the marginalized group learns the true belief more often,22 and

the dominant group less often. This is because the size of the dominant group decreases as

d increases. In the face of unpromising initial results for B, dominant agents are even more

less likely to quickly give up on B due to their further limited information access, resulting

22This is robust with parameters such that the average rounds to success for the entire community is > 3.
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in more gain in learning accuracy for the marginalized group. Furthermore, as d increases,

the entire community learns the truth more slowly for similar reasons.

In this model, I do not restrict the proportion of the marginalized group in the population.

What defines a subgroup’s marginalized status is the one-sided testimonial ignoration, rather

than its size. This is a merit since in many real cases, the marginalized group can be in the

majority, such as during the Apartheid in South Africa.

1.3 Variation 1: Homophilic Networks

1.3.1 The Model

As mentioned, some results from the based model can be explained by marginalized agents

having access to more information, but other results cannot solely be explained by informa-

tion access. Simulating the model with homophilic networks—where agents prefer to connect

with ingroup members—allows me to further investigate the extent to which information ac-

cess influences epistemic advantages. Moreover, homophily is a natural choice, as many real

human networks are homophilic based on race, gender, class, etc. (McPherson et al., 2001).

My results show that marginalized agents still hold a number of epistemic advantages, even

when they have equal or fewer expected connections compared to dominant agents.

This variation differs from the base model in network structure only. I use two-type random

graphs to generate the homophilic networks.23 First, every agent is connected to themselves.

Then, I divide the agents into marginalized and dominant groups. Each agent has some

probability of connecting with ingroup members, Pingroup, and some other probability of

connecting with outgroup members, Poutgroup. Finally, I require that, prior to adding one-

23See Golub and Jackson (2012) and Rubin and O’Connor (2018) for previous implementations of ho-
mophilic networks using this method.
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sided testimonial ignoration, the network structure is undirected. This means that Y is

connected to Z if and only if Z is connected to Y . The network is homophilic when Pingroup >

Poutgroup.

When a subgroup is in the minority, its members have fewer expected connections than

members of the other group, prior to adding one-sided testimonial ignoration. To see this,

first observe that the expected number of connections for an agent in this subgroup is

Pingroup · (k · d′ − 1) + Poutgroup · k · (1− d′) + 1,

where k is the size of the network, and d′ is the proportion of this subgroup in the population.

For an agent in the other group, their expected number of connections is

Pingroup · (k · (1− d′)− 1) + Poutgroup · k · d′ + 1.

When d′ < 1
2
and Pingroup > Poutgroup, an agent in this subgroup has fewer expected connec-

tions than an agent in the other group.24

When one-sided testimonial ignoration is added and when the marginalized group is in the

minority, we can specify the values of Pingroup, Poutgroup, and d such that a marginalized agent

would have fewer, equal, or more expected connections as compared to a dominant agent. For

example, a marginalized agent would have the same number of connections as a dominant

agent when Pingroup = .8, Poutgroup = .4, and d = 1
3
, fewer expected connections when

Pingroup = .8, Poutgroup = .3, and d = 1
3
, and more expected connections when Pingroup = .8,

Poutgroup = .5, and d = 1
3
. Simulating with homophilic networks, then, can reveal the extent

to which information access influences marginalized agents’ epistemic advantages.

24The result holds probabilistically and is not necessarily true for individual simulation runs.
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1.3.2 Results

I simulate this variation using the following values for the key parameters, for 10, 000 runs

each:25

• Size of the network (k) :18.

• Number of pulls per round (n): 1, 5, 10, 20.

• Probability of B (PB): .51, .55, .6, .7, .8.

• Proportion of the marginalized group (d): 1
6
.

– Pingroup = .8, .9, 1.
– Poutgroup = .6, .7, .8.

• Proportion of the marginalized group (d): 1
3
.

– Pingroup = .7, .8, .9.
– Poutgroup = .3, .35, .4, .45, .5.

I choose different values for Pingroup and Poutgroup based on d because depending on the value

of d, the values of Pingroup and Poutgroup needed for a marginalized and a dominant agent to

have the same number of connections are different.

Furthermore, I only simulate connected* networks in order to reduce noise in the data.26 Be-

cause of the one-sided testimonial ignoration, I define connectedness* as follows. A network

is connected* when (1) there exists a path from any marginalized agent to any arbitrary

agent in the network, and (2) there exists a path from any dominant agent to any arbitrary

dominant agent. Moreover, there exists a path from agent Y to agent Z iff there are agents

A0, A1, ..., Ai with i ≥ 1 in the network such that (1) Y = A0 and Z = Ai, and (2) Ak

updates on evidence shared by Ak+1, with 0 ≤ k ≤ i − 1. I only test the network size of

18 for two practical reasons. First, the total number of simulations is already large due

25I randomly generate a homophilic network for every simulation run.
26If the network is not connected*, then there would necessarily be two or more isolated communities

without any evidence sharing in between. This network would produce less than typical learning speed and
learning accuracy, compared to connected* counterparts with same parameter values.
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Figure 1.4: Variation 1, PB = .55, n = 5, d = 1
3
, Pingroup = .8, k = 18, 10, 000 simulation

runs.

to variations in Pingroup and Poutgroup. Moreover, networks with large populations are more

likely to be connected* after the two-type random graph generation process.

My results show that the marginalized group learns the true belief more frequently than

the dominant group, regardless of their expected numbers of connections. Similar to the

base model, this is due to polarization. When polarization occurs, the marginalized group

succeeds in learning but the dominant group fails, creating a disparity in learning accuracy.

Moreover, the frequency of learning the true belief for the two subgroups does not change

drastically as Poutgroup changes (Figure 1.4). This is because Poutgroup does not influence

the epistemic behavior of the dominant group as an isolated community. As a result, the

epistemic benefits the marginalized group gains remain the same.

How the two subgroups compare regarding their learning speed and the frequency of choosing

the epistemically better action depends on their members’ number of connections. When a

marginalized agent has the same expected number of connections as a dominant agent, the

former selects the epistemically better action (i.e. action B) more frequently than the latter
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Figure 1.5: Variation 1, n = 1, d = 1
3
, Pingroup = .9, Poutgroup = .45, k = 18, 10, 000 simulation

runs.

during the learning process (Figure 1.5).27 However, unlike the base model, marginalized

agents in general learns the true belief more slowly than dominant agents.28

The reason is that marginalized agents learn much more slowly when simulations end in

polarization than when simulations end in community success, but polarization still counts

as success for them.29 If we discount polarization from the marginalized group’s average

rounds to successful learning, then the marginalized group also learns the truth faster than

the dominant group in many but not all cases.

When a marginalized agent has more expected connections than a dominant agent, the

marginalized group’s epistemic advantage in speed of successful learning becomes more ro-

bust, while its members continue to hold the other advantages. As the difference in the

expected numbers of connections grows, eventually the average rounds to successful learn-

27The behaviors of the two subgroups get closer as PB increases. When PB is large, the two possible
states of the world become easier to distinguish. Therefore, the agents finish quickly, at less than 2 rounds.
The frequency of selecting the better action conveys less information as PB gets large.

28Measured in the first way introduced in §1.2.2.
29The marginalized group takes around two to five times more rounds to learn the true belief when

simulations end in polarization than those that end in community success.
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ing for the marginalized group, including polarization, would be lower than that for the

dominant group.30

When a marginalized agent has fewer expected connections than a dominant agent, the

marginalized group loses its epistemic advantage in the speed of successful learning. However,

in many cases where the difference in numbers of expected connections is small (≤ 2),

the marginalized group retains its epistemic advantage in the frequency of selecting the

epistemically better action during learning. Hence, the epistemic advantages brought to the

marginalized group by one-sided testimonial ignoration is sometimes strong enough to offset

the potential disadvantages from the loss of information access.

1.4 Variation 2: one-sided testimonial devaluation

1.4.1 The Model

I now simulate testimonial devaluation, where dominant agents devalue evidence from the

marginalized group, rather than ignore it. The model differs from the base model only in

updating rules. Here, I introduce Jeffrey conditionalization, which allows agents to update

on evidence according to how much they trust the accuracy of it. The formula for Jeffrey

conditionalization is the following:

Pf (H) = Pi(H|E) · Pf (E) + Pi(H|¬E) · Pf (¬E).

The agent’s final credence for the hypothesis H (Pf (H)) is defined as the agent’s initial

credence for H after Bayesian conditioning on the evidence E being true (Pi(H|E)) times

the agent’s credence that E is accurate (Pf (E)), plus the the agent’s initial credence for H

30The base model is a special case of a two-type random graph, where Pingroup = Poutgroup = 1. The
results in §1.2.2 fits with those here.
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after Bayesian conditioning on E being false (Pi(H|¬E)) times the agent’s credence that E

is inaccurate (Pf (¬E)). When Pf (E) = 1, the agent fully trusts the accuracy of E, and

Jeffrey conditionalization reduces to Bayes’ rule. When Pf (E) = Pi(E), i.e. the agent’s final

credence for E equals their initial credence for E,31 then Pf (H) = Pi(H), i.e. the agent keeps

their original credence for H and ignores the evidence altogether. When Pf (E) is between

Pi(E) and 1, the agent positively updates on the evidence, though not fully.

O’Connor and Weatherall (2018) use Jeffrey conditionalization to model situations where

agents do not fully trust the evidence gathering practices of other agents. In their models,

agents’ final credence for the evidence Pf (E) is based on how similar the sharer’s belief is

to the updater’s. Agents find the evidence shared by someone with similar beliefs more

trustworthy. In my model, however, the distrust is not based on the relative similarity of

beliefs, but rather on group membership.

As before, the entire population is divided into the marginalized group and the dominant

group. Marginalized agents fully update on evidence shared by all neighbors; dominant

agents, in contrast, fully update on evidence shared by ingroup neighbors, but devalue evi-

dence shared by outgroup members by applying Jeffrey conditionalization, with Pf (E) cal-

culated using:

Pf (E) = 1−m · (1− Pi(E)).32

Here, m is a parameter between 0 and 1, capturing how much dominant agents devalue

testimony from the marginalized group. When m = 0, Pf (E) = 1 and dominant agents

fully update on evidence from marginalized agents—the model is equipped with perfect

31Pi(E) can be calculated from Pi(H) in the following way: Pi(E) = Pi(E|H)Pi(H)+Pi(E|¬H)Pi(¬H).
32There are several formulae for Pf (E) that would satisfy the desiderata below equally well. However,

my results would remain largely the same had I chosen the alternatives. Furthermore, because Jeffrey
conditionalization is non-commutative (c.f. Lange, 2000), I require that a dominant agent randomly selects
the order according to which they update. The order of updating, to my knowledge, does not influence the
qualitative results.
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testimonial reciprocity. When m = 1, Pf (E) = Pi(E) and dominant agents fully ignore

evidence from marginalized agents—the model becomes my base model. For this variation,

I simulate cases with m ∈ (0, 1), i.e. I consider cases where dominant agents devalue but do

not completely ignore evidence from the marginalized group. The higher the value of m, the

more dominant agents devalue.

Because dominant agents still positively update on evidence from marginalized agents, po-

larization is no longer a stable end state. The two remaining stable end states are community

convergence to the true belief and community convergence to the false belief. Thus, for ev-

ery simulation run, marginalized and dominant groups end with the same belief state. They

learn the truth with the same frequency.

1.4.2 Results

I simulate this model using the following values for the key parameters, for 10, 000 runs each:

• Size of the network (k) : 3, 6, 12, 18.

• Proportion of the marginalized group (d): 1
6
, 1

3
, 1

2
, 2

3
.

• Number of pulls per round (n): 1, 5, 10, 20.

• Probability of B (PB): .51, .55, .6, .7, .8.

• Degree of devaluation (m): .2, .5, .8.

• Network structure: complete.

I run the model with perfect testimonial reciprocity for all parameter values except for m

for comparison.

I find that the marginalized group arrives at the true belief faster than the dominant group

(Figure 1.6).33 The marginalized group’s advantage in learning speed depends on both m

and d. As m increases, the difference in the average rounds to successful learning between
33Measured in the first way introduced in §1.2.2.
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Figure 1.6: Variation 2, PB = .51, n = 1, d = 2
3
,m = .8., 10, 000 simulation runs.

the two subgroups widens. As d increases, the difference in learning speed also widens.

Moreover, marginalized agents select the epistemically better action more frequently than

dominant agents during the learning process.34 As m increases, the difference in frequency

between the two subgroups widens.35

Compared with the model with perfect testimonial reciprocity, the entire community in this

variation learns the true belief more slowly.36 Moreover, asm increases, the entire community

in this variation learns more slowly; as d increases, it also learns more slowly. This shows that

one-sided testimonial devaluation is detrimental to the entire community’s learning speed,

and the adverse effect becomes more salient the more dominant agents devalue marginalized

agents’ testimony.

34This result is robust for parameters such that the average rounds to successful learning is > 2 for the
entire community.

35This result is robust for parameters such that the average rounds to successful learning is > 3 for
the entire community. The degree to which marginalized agents obtain this epistemic advantage similarly
depends on d, but the result is not as robust, especially when m is small.

36Measured in the second way introduced in §1.2.2.
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Finally, comparing the community learning accuracy between this variation and the com-

munity with perfect testimonial reciprocity does not bring robust results. The frequency at

which the entire community arrives at the true belief fluctuates around that of the model

with perfect testimonial reciprocity. In general, as m and d grows, the entire community

is more likely to arrive at the true belief more frequently than the community with perfect

testimonial reciprocity. What is robust, however, is that the community in this variation

always learns the true belief less frequently than the marginalized group in my base model.

1.5 A Network Standpoint Epistemology

In the above three models, marginalized agents end up with several epistemic advantages, by

virtue of their testimony being ignored or devalued by the dominant group. Here, the testi-

monial ignoration and devaluation practiced by the dominant group is largely epistemically

detrimental to its members and the entire community, but is epistemically advantageous to

the marginalized group. The inversion thesis, which states that marginalized social groups

hold epistemic advantages, is a key claim of standpoint epistemology, though its interpreta-

tions and justifications are often contested (see Wylie, 2003; Intemann, 2010; Toole, 2020).

My modeling results contribute to standpoint epistemology in two ways. First, I provide

a clear interpretation of the inversion thesis by making epistemic advantages precise using

several measures. Second, I provide one possible way in which the inversion thesis can arise

by showing that it follows from another key claim of standpoint epistemology, namely, the

unidirectional failure of testimonial reciprocity.

Standpoint epistemology started as an application of Marx’s analysis of the proletarian

standpoint to the effect of the sexual division of labor in knowledge production (Hartsock,

1983). It was later extended to cover other unequal power relations’ influence on knowledge

production. For Hartsock (1983, 298), women’s material lived experiences, such as their
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“relationally defined existence, bodily experience of boundary challenges, and activity of

transforming both physical objects and human beings,” foster more accurate beliefs for all

human activities.

Hartsock (1983)’s argument faces a number of interpretive and justificatory questions. For

one, it is unclear exactly what she means by "more accurate beliefs," or more broadly,

epistemic advantages. Moreover, it is unclear whether the lived experiences she cites are

descriptively true for all women, and it is unclear how they further lead to epistemic advan-

tages. Lurking in the background is also a question about intersectionality—as individual

human beings are subjected to different dimensions of oppression, how do we identify the

subgroups that hold the most superior knowledge (see Longino, 1993)? Do we look to the

ones who are the “most” oppressed within the oppressed groups for the “best” knowledge?

These interpretive and justificatory questions have led to heated debates.37 For instance,

Harsock’s argument is charged by Hekman (1997) with essentializing women, though Hart-

sock vehemently denies the charge (Hartsock, 1997). Partly due to intense debates and

despite its fruitful applications, standpoint epistemology has been marginalized in contem-

porary philosophy (Toole, 2020).

This paper is part of a recent effort (e.g. Toole, 2020; Saint-Croix, 2020) at addressing

issues facing standpoint epistemology by articulating interpretations of the theory that are

neither obviously false nor trivially true,38 and offering explanations for its claims using novel

philosophical methods. First, I precisely interpret a subgroup’s epistemic advantages using

three measures in my models—the frequency at which a subgroup eventually learns the true

belief, the speed at which a subgroup learns the true belief, and the frequency at which a

subgroup selects the epistemically better action during the learning process. Second, my

modeling results show one possible way in which the inversion thesis can be true; namely,

37For instance, Alison Wylie (2003) calls standpoint theory “one of the most controversial theories to have
been proposed and debated in the 25-30 year history of second wave feminist thinking about knowledge and
science.”

38Contra Intemann (2010)’s comments.
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when there is unidirectional failure of testimonial reciprocity. Thus, I provide a sufficient

condition for the inversion thesis under reasonable assumptions, but not a necessary one.

One might regard the claim that marginalized groups’ testimony is ignored or devalued as

far less controversial than the inversion thesis. Insofar as this is right, my models also have

the virtue of explaining a controversial thesis by showing that it follows from something

more widely accepted.39 Given the widespread nature of one-sided testimonial ignoration

and devaluation, my results may also shed light on real world cases where the inversion thesis

holds.

Note that the mechanism I identified—the unidirectional failure of testimonial reciprocity—

is not necessarily the ones that standpoint epistemologists such as Hartsock had in mind.

Perhaps it will turn out that women’s lived experiences, as Hartsock understands it, lead

to their testimony being ignored or devalued, or perhaps Hartsock’s reasoning would inde-

pendently lead to the inversion thesis. In these cases her original justification would still be

vindicated. Investigating this, however, is beyond the scope of this paper.

My models admittedly have a few limitations. To start, all agents in my models face the same

learning problem, thus they share the same “reality.” However, many works in philosophy

of race40 concern the fundamentally different realities faced by marginalized and dominant

groups, for instance, the race disparity in policing in the US. Some might suggest that the

marginalized group has more accurate beliefs because they are “fluent” in both worlds (see

Mills, 2007). My models do not incorporate this notion of “dual realities.” As such, though

I show that the marginalized group has epistemic advantages when learning the shared

“reality,” I do not rule out the possibility that the marginalized group might have other

kinds of (dis-)advantages due to “dual realities.” I plan to explore models without a shared

“reality” in my future work.

39Thanks to an anonymous reviewer for raising this point.
40E.g., the notion of “double consciousness” in Du Bois (2008).

33



Moreover, my models only have two groups, and I do not consider more groups or agents with

multiple group membership. One would expect models with more groups to follow similar

epistemic trends, but with slightly altered dynamics. For instance, a testimonial ignoration

model with a third “bridge” subgroup might not have polarization as an end state.

In addition, one might worry that some of the assumptions in bandit models may be too

idealized. For instance, in some real world situations, investigating one hypothesis may bring

insights into other hypotheses as well. One would expect that in this situation, marginalized

agents would still gain epistemic advantage in learning speed and the frequency of selecting

the better action, though the entire community would eventually be able to reach the true

belief reliably.41 Thinking about how some of the assumptions can be relaxed is a worth-

while direction of future research. Moreover, as Wu and O’Connor (2023) recently notes,

some of the network effects in the bandit model paradigm, such as the Zollman effect, are

independently discovered in other modeling paradigms like the NK landscape model (Lazer

and Friedman, 2007; Fang et al., 2010). It would be worthwhile to test if the marginalized

group would end up with epistemic advantages as we apply one-sided testimonial ignoration

and devaluation to the NK landscape model. If the results replicate, then this could indicate

that the ways in which these modeling paradigms differ are in some sense irrelevant to the

phenomena that we aim to explain (see Batterman and Rice (2014)).

Furthermore, in my models, the marginalized agents are participating members of the epis-

temic community in the sense that they still have access to others’ evidence. However, in

real epistemic situations, sometimes the very manifestation of marginalization is the exclu-

sion of certain agents from epistemic communities. This concern would rightly constrain

the applicability of my models. But I would like to suggest that this reflects a merit of my

approach as well. Recall that Hartsock’s argument faces the following problem of intersec-

tionality: if marginalized groups have epistemic advantages for all human activities, then

41This is because all agents always get information about both actions in some form.
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should we go to the most marginalized group in the world to seek the best knowledge? This

problem becomes more puzzling given Narayan’s observation that “oppression is often partly

constituted by the oppressed being denied access to education and hence to the means of

theory production” (Narayan, 1988, 36). My models resist this slippery slope by focusing on

situations where marginalized agents are participating members of the epistemic communi-

ties, in that they have access to dominant agents’ evidence. In fact, when dominant agents

refuse to share their evidence with the marginalized group, the two subgroups effectively

function as isolated communities. In this case, the marginalized group, often also in the

minority, may learn worse as a result.42 Moreover, the variation I presented in §1.3 with

homophilic networks, where poutgroup is small, can be reinterpreted to model a version of

epistemic exclusion. Here, marginalized agents have very sparse access to dominant groups’

evidence, but their informational access to the dominant group is not completely cut off.

This is akin to the all-to-familiar situation where very few marginalized knowers are invited

to participate in dominant epistemic spaces, but their testimony is still ignored (see, e.g.,

Settles et al. (2020)). My results from §1.3 suggest that marginalized agents in this situation

still learn the true belief more frequently.

Finally, I will preempt a tempting but misguided response to my modeling results. One might

suggest that, since the marginalized group ends up with epistemic advantages, we should now

start to ignore or devalue testimony arising from some members of our community, as long

as we eventually listen to what they say. This response is misguided for two reasons. First,

one-sided testimonial ignoration and devaluation is a textbook case of testimonial injustice

according to Fricker (2007). It is unjust because the audience is not giving enough credit to

the speaker as they justly deserve. Ignoring or devaluing testimony is committing injustice.

42To be sure, non-participating marginalized agents could have epistemic advantages in other aspects than
the shared “reality” for all agents; Narayan (1988) offers a few examples of these. Moreover, when dominant
agents refuse to share their evidence with marginalized agents, but still updates on evidence shared by the
marginalized group—an epistemic exploitation scenario that may underlie some real cases—, my base model
can be reinterpreted to account for this situation too, with the dominant and marginalized groups, and thus
their epistemic (dis-)advantages, exchanged.
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Second, one-sided testimonial ignoration is epistemically detrimental to the entire community

as it learns the true belief less frequently and more slowly. Moreover, in the case of one-sided

testimonial devaluation, where the community might learn better than the community with

perfect testimonial reciprocity, my results show that the marginalized group can always learn

better by refusing to share their evidence with the dominant group.43 When marginalized

agents are in a situation where their evidence is constantly devalued, they would have little

incentive to continue sharing their epistemically better informed evidence with dominant

agents. Consequently, the entire community would be epistemically worse off, since the

learning situation reverts to the base model. Rather than prompting individuals to ignore or

devalue certain community members’ evidence, I hope my modeling results would motivate

individuals and communities to identify cases of preexisting failure of testimonial reciprocity,

to give epistemic credit where it is overdue, and to recognize the epistemic advantages that

marginalized agents may already hold.

Besides offering one possible way in which the inversion thesis could arise by casting it as

a consequence of the unidirectional failure of testimonial reciprocity, my modeling results

complicate the understanding and applications of certain network effects. Before closing the

paper, I will briefly discuss my contribution to network epistemology and note directions of

future work.

As previously mentioned, the Zollman effect is usually understood as a claim that "a sparser

network structure can benefit an epistemic community" (Rosenstock et al., 2017). Zollman

(2007, 2010) finds that the more connected the networks, the less frequently but faster

the community learns the true belief. However, Rosenstock et al. (2017) tests Zollman

(2007, 2010)’s models using an expanded range of parameter values, and finds that the

Zollman effect is not robust for a considerable portion of the parameter space. It is worth

noting that Rosenstock et al. (2017) does not find a reversal of the Zollman effect, i.e.

43My base model applies to both when dominant agents do not update and when marginalized agents
refuse to share.
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more sparsely connected communities never learn the truth less frequently than the more

connected counterparts.

The results of my base model further complicate our understanding of the Zollman effect.

The community in my model learns the true belief less frequently and more slowly than

the community with perfect testimonial reciprocity. This shows that for the benefits of

the Zollman effect to obtain, the sparse structure cannot manifest in a cutoff of information

channels for a subgroup. Otherwise, the Zollman effect may be reversed. For the marginalized

group in my base model, on the surface level its members gain epistemic benefits because

they do not lose connections, so it seems to counter the spirit of the Zollman effect. However,

the marginalized group gains epistemic benefits precisely because they get information from

another group that is disconnected. In a sense, the reasoning behind the Zollman effect

explains the situation here: the marginalized group benefits from the disconnectedness of

the dominant group, and as a result, its members learn the truth more frequently.

This also constrains how the Zollman effect could be applied to real epistemic communities.

If, say, a group of scientists decides to interpret the Zollman effect as suggesting that they

should stop reading papers from others in the scientific community, but they continue to

publish and post to the arXiv, then my modeling results show that as long as the authors of

the papers that they ignore continue to read their papers, members of this group may learn

worse according to all measures behaving that way.

Earlier I mentioned another interpretation of my base model, which treats the loss of testimo-

nial reciprocity not as the audience refusing to update, but as the speaker refusing to share.

Under this interpretation, the audience in general no longer commits testimonial injustice.

As it turns out, this alternative interpretation has fruitful applications in social epistemology.

For one, it provides another instance of the Independence Thesis, which roughly states that

the prescriptions for individual and group decision-making can come apart (Mayo-Wilson

et al., 2011). Indeed, a subgroup may learn the truth more frequently by refusing to share
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their evidence with outgroup members; but the entire community suffers as a result. In-

dustry scientists who have proprietary knowledge but still have access to information from

academia can be modeled this way. This interpretation also applies to situations where

the dominant group makes their evidence inaccessible to marginalized groups, but exploits

evidence from marginalized perspectives. In both cases, the industry scientists and the dom-

inant group would have epistemic advantages. Moreover, applied to scientific communities,

this interpretation sheds light on the recent debate on whether the communist norm, which

prescribes that scientists share their findings as widely as possible, is an additional contract

that scientists should sign (Strevens, 2017; Heesen, 2017). My results would suggest that

by following the communist norm, scientists may not learn the true belief as frequently as

theoretically possible, but they avoid the epistemic pitfall when no one shares. I explore this

interpretation in a follow-up paper (Wu, 2022b).
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Chapter 2

Withholding Knowledge

2.1 Introduction

The communist norm in science mandates that scientists should share their work as widely

as possible (Merton, 1973). It is a core norm in science, but not a given. While academic

scientists largely adhere to the communist norm, industrial scientists do not typically share

proprietary findings.1 There seem to be community-level benefits for sharing one’s work.

For instance, scientific discoveries could be made faster, so the public as well as the rest of

the scientific community can reap the benefits earlier (Strevens, 2017; Heesen, 2017). But

do individual scientists, or subgroups of scientists, have an incentive to share?

Previous work in the philosophy of science answers this question by appealing to credit

incentives by which scientists may be instrumentally motivated. Strevens (2017) appeals to

the priority rule, which stipulates that credit—a proxy for recognition for one’s scientific

work—will be allocated only to the scientist who first makes a discovery. He argues that

because of the priority rule, individual scientists would have credit incentives to withhold
1In fact, publicly-funded scientists in the US must share their research by 2025 (Brainard and Kaiser,

2022). Many European funders have similar requirements.
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their evidence from others during the process of inquiry. In so doing, they increase their own

chances of making a credit-worthy finding first.2 However, Heesen (2017) uses a multi-stage

game theoretic model to argue that in many cases, it is still rational for credit-maximizing

scientists to share, because scientists can publish and claim credit for intermediate results.

Credit is only one of many incentives facing scientists. They are also, or at least nominally,

motivated to find the truth (see, e.g., Bright (2017); Zollman (2018)). Curiously, this epis-

temic incentive underlying scientific sharing has been relatively under-explored. The received

position seems to be that a scientist’s decision to share or not during the learning process

does not impact the likelihood of them eventually making a discovery. Not only do Bright

and Heesen (2023) recently explicitly claim that the communist norm is non-epistemic just

in this sense, but both Strevens (2017) and Heesen (2017)’s models also implicitly assume

that the probability that a scientist will eventually make a discovery remains unchanged

regardless of whether they share during the learning process. It is unclear what grounds

this position, especially given the growing literature from network epistemology that shows

how our social connections and evidence-sharing dynamics can significantly shape knowledge

production (Zollman, 2010; O’Connor and Weatherall, 2018; Fazelpour and Steel, 2022; Wu,

2022a).

In this paper, I focus on the epistemic incentives underlying scientific sharing. Specifically,

I ask, if scientists are purely motivated by the truth or epistemic significance of their own

findings, are they incentivized to share evidence? I investigate this question by simulating

models of an epistemic community with two subgroups, one capable of withholding evidence

from out-group members, and one adhering to the communist norm by sharing evidence.3

I find that the subgroup that withholds ends up with several epistemic advantages, both

compared to the subgroup that shares and to an entirely “communist” community where

2Partha and David (1994) make a similar argument more informally.
3Note that my models have two subgroups, whereas previous models (e.g. Strevens (2017); Heesen (2017))

typically have two agents. But this is not a major departure—results presented here still hold when there
are two agents, one withholding and one sharing.
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everyone shares regardless of subgroup membership. This suggests that a truth-seeking

scientist may be incentivized to withhold their evidence.4

I construct two models from different paradigms for this purpose—a generalized multi-armed

bandit model with a network structure based on Zollman (2010) and an NK landscape model

with a network structure based on Lazer and Friedman (2007). These two models represent

two different types of scientific inquiry. In one model agents figure out which of the two

probabilistic epistemic options are better, representing, e.g., clinical doctors finding out the

efficacy of two different drugs by conducting trials. In the other, agents search in a vast

epistemic landscape with multiple “peaks,” representing, e.g., researchers adopting different

approaches to solve a problem. Together these models represent a wide array of possible

scientific problems.

Results from the bandit model show that members of the “withhold” group reach the true

belief more frequently and faster, and select the epistemically better action more frequently

during the learning process, as compared to the “share” group. In the NK landscape model,

members of the share group end up with worse solutions than both the withhold group and

a generally communist community. Moreover, the withhold group gains epistemic advantage

even compared to the communist community in terms of arriving at the true belief more

frequently (in the bandit model) and ending up with epistemically better solutions (in the

NK landscape model in most cases).5

These results are troubling, especially given that proprietary industrial scientists (see, e.g.

DeAngelis (2003); Michaels (2008); McGarity and Wagner (2010)) and scientists working on

classified research (see, e.g. Galison (2004)) routinely withhold their evidence from others.

Academic scientists, on the other hand, largely conform to the communist norm (Louis et al.,

4Note that in my models the scientists are motivated by themselves finding the truth. So the epistemic
benefits may translate into practical benefits for the scientists too—such as recognition of or financial gains
from their work.

5These results extend and provide robustness checks for recent results from a simpler multi-armed bandit
model, built for another context (Wu, 2022a).
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2002; Macfarlane and Cheng, 2008). My results suggest that even if these scientists are not

as instrumentally motivated by credit as academic scientists, they may still have epistemic

incentives to withhold evidence. Moreover, while not explicitly modeled in this paper, indus-

trial scientists likely have further financial incentives to withhold evidence. Consequently,

academic scientists suffer epistemically.

I will then observe that, based on simulation results, this share-withhold dynamics gives rise

to what one might call an Epistemic Weak Prisoner’s Dilemma. Each subgroup receives the

highest epistemic payoff when they withhold while the other subgroup shares. Their payoffs

are the worst when the other group withholds, and their payoff is intermediate when both

subgroups share. I will discuss features of this game and explore strategies that may shift

communities into mutual sharing.

This paper is organized as follows. In §2.2, I introduce the generalized bandit model and

present my simulation results. In §2.3, I introduce the NK landscape model and discuss my

results. I also note common features of the two models that lead to robust qualitative findings

and explain why certain results are not as robust. In §2.4, I show that a weak prisoner’s

dilemma may represent the epistemic dynamics of scientific sharing. §2.5 concludes. This

paper is supplemented by two technical appendices. Appendix A provides definitions of the

end states in the generalized bandit model. Appendix B describes how the solution space of

the NK landscape model is generated.

2.2 The Generalized Bandit Model

In this section, I construct a model where a group of agents is tasked with a learning problem.

There are two subgroups: the withhold group, whose members only share evidence with

in-group neighbors and withhold from out-group neighbors, and the share group, whose
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members share evidence with every neighbor. The goal of this model is to explore the

epistemic consequences of this asymmetric evidence sharing dynamics across subgroups.

Let us motivate the model by considering a toy example. Suppose that a group of clinical

scientists is tasked to figure out which of the two drugs, A or B, are more effective at treating

a disease. Each scientist tests the drugs on patients, receives evidence from their tests, and

updates their beliefs from the evidence they and others receive. The scientists have limited

resources, so they each only test one drug per round. Moreover, they want to minimize

patient suffering, so they always assign the drug that they currently think is better. As the

scientists keep getting evidence for the drugs, eventually they should reach stable beliefs

about which drug is better.

This example is well modeled by what is called a two-armed bandit problem with a network

structure. The name “bandit problem” comes from applying the model to a gambling situ-

ation, where a gambler aims at maximizing their profits when playing with a multi-armed

“bandit” (or slot) machine. Let us first consider the problem for one agent, before thinking

about it in a group setting. Every round, the agent selects between two options, A and B,

tests their choice a fixed number of times n, and gets evidence about how many times their

tests succeed. Each option has a fixed probability of success. Unbeknownst to the agent,

I set the success rate of A, PA, to be .5, and the success rate of B, PB, to be lower than

.5. This means that A is objectively the better choice. The agent, however, is uncertain

about the success rate of either option, and their credence for each is represented by a beta

distribution with two parameters, α and β.6 Details about the beta distribution do not

matter for our purpose. What matters is that in the context of Bayesian learning, we can

6A beta distribution is a function of the following sort:

f(x) =
xα−1(1− x)β−1

B(α, β)

where B(α, β) =
∫ 1

0
uα−1(1− u)β−1du and α, β > 0.
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interpret α as the agent’s estimate of the “successes” of the arm, and β as their estimate of

the “failures.” For instance, suppose the agent starts with αA = 1 and βA = 3 for option

A, tests this option 10 times, and receives 8 successes and 2 failures, then, after Bayesian

updating, their posterior will still be a beta distribution, with parameters αA = 1 + 8 = 9

and βA = 3 + 2 = 5. If this arm continues to be tested, over time, αA

αA+βA
will approach the

true success rate of A. Every round, the agent selects the option that they currently think

has a better chance at succeeding,7 tests it n times, and updates on their evidence in the

(myopically) Bayesian way described above. After sufficient rounds, the agent’s belief about

which option is better stabilizes.

Now suppose a group of agents, connected via a network structure, solves the same bandit

problem together. Each agent starts with four randomly assigned parameters αA, βA, αB, βB,8

representing their own credence for the two options. The network structure determines who

they are connected to, or who their “neighbors” are. Typically, as in the case of Zollman

(2010), every round, after collecting their evidence, agents share the evidence with all their

neighbors and update on their neighbors’ evidence in the Bayesian way.

In my model, however, not everyone shares evidence with all their neighbors. I divide the

community into two subgroups: the withhold group, whose members share their evidence

with in-group neighbors but withhold evidence from out-group neighbors, and the share

group, whose members share their evidence with all their neighbors. All agents then update

their beliefs based on all the evidence they receive (including their own evidence) in the

Bayesian way. This modification creates an asymmetry along group membership in the

evidence-sharing dynamics. To go back to the previous example of clinical trials of drugs,

my model may represent a situation where a community of scientists is trying to figure

out the efficacy of two different drugs, but within this community, there is a subgroup of

7If the mean of their beta distribution for A is higher than the mean of their beta distribution for B, i.e.
αA

αA+βA
> αB

αB+βB
, then they choose A; they choose B otherwise.

8These are real numbers between 0 and 4 (exclusive).
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industry-affiliated scientists who withhold their evidence from the outside, even though the

rest of the community continues to share their evidence widely.9

I run each simulation for 10, 000 rounds. At the end of the simulation, there are typically

three stable end states: (1) community convergence to the true belief, where everyone thinks

that A is better; (2) community convergence to the false belief, where everyone thinks that

B is better; and (3) polarization, where the withhold group thinks that A is better, but the

share group thinks that B is better. An overwhelming majority of simulations end and stay

in these states.10 Detailed definitions of the end states are available in Appendix A.

Polarization is only possible in this model because one group withholds evidence from an-

other. In this state, the withhold group succeeds in learning, but the share group fails in

learning. This state is stable because here, the share group has already settled on B and

they do not receive evidence about A anymore, even though the withhold group continues

to test A. It is important to note that a polarized state in the other direction, i.e. the share

group succeeds but the withhold group fails, is not stable. This is because the withhold

group would continue to receive evidence for action A from the share group, and since A is

in fact better, the evidence they receive would prompt them to eventually switch.

It is important to note that this model is a generalization of a previous model (Wu, 2022a)

involving a simpler bandit problem. There are two subgroups in Wu (2022a)’s model, one

ignoring evidence from out-group neighbors, and one updating on evidence shared by all

their neighbors. The asymmetric evidence updating dynamics in Wu (2022a)’s model is

structurally equivalent to the asymmetric evidence sharing dynamics in this model, with the

ignored group in Wu (2022a) and the withhold group in this model occupying structurally

the same position. This model uses a more complex bandit problem where agents start

9Note that industrial scientists mutually share with each other. I briefly explore what would happen if
there are multiple mutually withholding “industry” groups in §2.4.

10Simulations with learning problems that are “hard” (e.g. where PA and PB are close or when n is
small) are more likely to not finish in these end states than problems that are “easy,” though for each set of
parameter values, more than 97% of simulations reach one of these end states.
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with not knowing the success rates of either epistemic option and there are infinitely many

possible success rates for both options, whereas in Wu (2022a)’s model, agents start with

knowing the success rate of one option and there are only two possible success rates for the

other. As we will see, my results on the epistemic advantage of the withhold group provide

a robustness check in a more generalized setting for the results in Wu (2022a).11

2.2.1 Results and Discussions

For each set of parameter values, I run the model for 10, 000 simulations. The parameters

tested include:

• Total number of agents (k): 3, 6, 12, 18;

• Proportion of the withhold group in the population (d): 1
6
, 1
3
, 1
2
, 2
3
;

• Number of tests per round (n): 1, 10, 100, 1000;

• Success rate of B (PB): .4, .45, .49;

• Network Structure: complete.12

In addition, I run a “communist” model, where everyone shares with everyone, for all the

parameter values. This is equivalent to models from Zollman (2010), and it provides a

comparison to my results. Unless otherwise noted, results reported here are robust across

all parameter values.

I find first that the withhold group succeeds in learning more frequently than the share group

(Figure 2.1). I measure the frequency of successful learning for a subgroup by calculating

the proportion of simulations that the subgroup succeeds in learning out of all simulations

where the community ends in one of the three end states. In this model, the withhold group

11Wu (2022a) uses her results on the epistemic advantage of the ignored group to justify a standpoint
epistemology thesis that marginalized group can sometimes have better knowledge.

12A network structure is complete when every agent is connected to every other agent. I also consider
the directed Erdős-Rényi random networks of size 18 for robustness checks.
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Figure 2.1: PB = .49, n = 10, d = 1
3
, complete network structure, 10, 000 simulations.

succeeds in learning more frequently because polarization is an end state. In this state, the

withhold group succeeds in learning but the share group fails.

Moreover, and perhaps surprisingly, the withhold group succeeds in learning even more fre-

quently than a communist community where everyone shares with everyone (Figure 2.1).13

The reason is that in simulations that start with initially promising evidence for B and

unpromising evidence for A,14 members of the communist community may settle on B as

the better option. But in my model, since the share group is effectively an isolated com-

munist community of a smaller size, it takes them longer to reach a stable state. This in

turn means that evidence from both actions circulates in the network for longer, and the

community, including the withhold group, may revert to choosing A. This explanation is

related to what is often called the Zollman effect (Zollman, 2007), which states that a more

sparsely-connected network more frequently succeeds in learning. Here, the sparsity of the

network slows down learning, so the community spends more time exploring different options

before settling down. This period of time where members of the community test different

13This result holds for more than 92.2% of parameter combinations. It is more likely to fail when the
learning is “easy,” i.e. when PB is low and n is high. When PB = .49, this result holds 100%. This pattern
of robustness levels is consistent with Rosenstock et al. (2017)’s findings on the Zollman effect.

14These simulation runs are possible because of the probabilistic nature of epistemic options in the model.
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Figure 2.2: PB = .45, n = 1, d = 2
3
, complete network structure, 10, 000 simulations.

options is called a period of transient diversity (Zollman, 2010; Wu and O’Connor, 2023).

When transient diversity lasts longer, it brings epistemic benefits to some or all community

members.

It may be instructive to think about the withhold group’s epistemic advantage through a

trade-off between exploration and exploitation inherent in the bandit model. Due to the

probabilistic nature of both arms of the bandit, agents typically have to test each arm

sufficiently many times to form a reliable estimate of its success rate. This gives rise to a

dilemma for individual agents in the model—do they keep exploiting the option that they

currently think is best, or do they explore the other option that seems inferior? By not

sharing their evidence with out-group members, the withhold group in a sense takes the

best of both worlds. They continue to exploit the option they currently think is better,

while benefiting from the exploration of the share group.15 This is related to the “free rider

problem” (Kummerfeld and Zollman, 2015), which describes situations where it is rational

for individual agents to leave the exploring to others in the community. In my model, the

15Note that the share group explores more not because of differences in their behavioral rules, but because
they may be testing different options from the withhold group since they do not have access to the withhold
group’s evidence.
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free rider problem is even more insidious, since here the free riders, i.e. the withhold group,

reap even more epistemic benefits than the rest of the community.

Furthermore, the withhold group takes a shorter time to succeed in learning than the share

group in simulations that end in community convergence to the true belief.16 The withhold

group’s speed to successful learning is comparable to the communist community’s (Figure

2.2). The time a subgroup takes to succeed in learning is measured as follows. For every

agent in the subgroup, I record the first round after which the agent’s credence satisfies the

success conditions (see Appendix A for details). I then take the average out of all agents

in the subgroup and all simulations that end in community convergence to the true belief.

Here, the withhold group succeeds in learning faster because they update on more pieces

of evidence than the share group. However, in simulations that end in polarization, the

withhold group takes longer to learn the truth. This is because in these cases, the share

group converges to believing that B is superior early on, but the withhold group slowly tests

A until they have sufficient evidence for its superiority. This means that the withhold group

consistently has epistemic advantage over the share group in all situations—when they both

succeed in learning, the withhold group succeeds more quickly; when the share group fails

in learning, the withhold group still may succeed, albeit slowly.17

The withhold group on average selects the epistemically better action more frequently during

the learning process than the share group (Figure 2.3). For this, I count the number of

rounds that an agent in the said subgroup selects action A, then divide it by all agents

in the subgroup and all simulations.18 As the withhold group gets larger, it selects the

epistemically better action more frequently, and the share group selects it less frequently.

16This result holds for more than 92.8% of parameter combinations. It is more likely to fail when the
learning is “hard,” i.e. when PB is closer to PA. In this situation, it is difficult to distinguish PA and PB ,
so it is more likely to have a small number of simulations that take a long time to finish, thus skewing the
average rounds to successful learning.

17Contrast this with the Zollman (2007, 2010)’s finding that a less connected community succeeds in
learning more frequently but less quickly. The withhold group in my model truly takes the best of both
worlds.

18Including simulations that do not end in the three end states.
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Figure 2.3: PB = .4, n = 1, k = 6, complete network structure, 10, 000 simulations.

The other epistemic advantages for the withhold group similarly depend on its proportion

in the community. As the proportion of the withhold group grows, the withhold group’s

epistemic advantage tends to increase in terms of the frequency and speed of successful

learning.

To further test for robustness, I simulate this model and Zollman (2010) with directed Erdős-

Rényi random networks and find qualitatively similar results.19

19Such a network is generated at the start of each simulation in the following way. First, every agent is
linked to themselves. Then, for every agent X and every other agent Y , the probability that X is connected
to Y is a fixed number b (0 < b < 1). I ran the simulations for communities of size 18 for all other parameters
listed, with probability of connection b = .6, .7, .8, .9, for 10, 000 simulations each. Note that this network is
directed because X could be connected to Y without Y be connected to X. I expect a model with undirected
network structures to produce similar results. Furthermore, I only consider connected* networks in this case,
defined in the following way. A network is connected* if (1) there exists a path from any sharing agent to
any arbitrary agent in the network; and (2) there exists a path from any withholding agent to any arbitrary
withholding agent. Moreover, there exists a path from agent Y to agent Z if there are agents A0, ..., An such
that A0 = Y , An = Z, and Ai shares evidence with Ai+1, for 0 ≤ i < n. This definition is analogous to the
definition of connected* in Wu (2022a).

50



2.3 The NK Landscape Model

Next, I consider an influential epistemic landscape model—the NK landscape model.20 My

model again consists of two subgroups—a withhold group and a share group—searching in

the same epistemic landscape for solutions to a problem. In what follows, I first introduce

the general idea behind an epistemic landscape model. I then introduce the solution space of

the NK landscape model, the network structure, and agents’ behavioral rules in my model.

After that, I compare and contrast this model with the generalized bandit model in §2.2,

before discussing the results.

We can think of an epistemic landscape as containing a large number of research approaches

to a particular topic of inquiry. Each research approach is a point on the landscape and

has a score associated with it, representing its “epistemic significance.” Following Alexander

et al. (2015, 426), I interpret research approaches in a broad way—they have a number of

components, including research questions, methods, skills, instruments, background assump-

tions and theories, etc. We can then introduce a group of agents searching the landscape, i.e.

choosing research approaches and solving problems. This models important aspects of sci-

entific problem solving—scientists constantly communicate with others in their community

and decide whether they should stick with the research approach they currently have or try

new ones, either by exploring on their own or adopting an approach from the community.

The NK landscape is a sophisticated multi-dimensional landscape with multiple “peaks.”21

The solution space is N -dimensional, with binary strings (0s and 1s) of length N as its points.

At the start of each simulation, an algorithm with parameter K (0 < K < N − 1) is used to

randomly assign scores between 0 and 1 to each string. A full description of the algorithm

20While the NK landscape model is influential in other fields, it is under-explored in philosophy (with the
exception of Alexander et al. (2015)).

21C.f. lower-dimensional epistemic landscape models, e.g. Weisberg and Muldoon (2009); Hong and Page
(2004). The NK landscape model was originally developed in biology to model “synergies” among genes, see
Kauffman and Levin (1987); Kauffman and Weinberger (1989).
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Figure 2.4: Stylized Representation of the Solution Space (Lazer and Friedman, 2007).

is available in Appendix B. Roughly speaking, the parameter K determines how “rugged”

the solution space is and how correlated “nearby” scores are. When K = 0, the solution

space is smooth with one single peak. When K = N − 1, the solution space becomes

totally chaotic, where the score of every point is totally independent of adjacent points.

When 0 < K < N − 1, the landscape is rugged, with multiple local optima, and with some

correlation between adjacent solutions. In this case, some peaks in the landscape may only be

reached via some solutions but not others. As K grows, the landscape becomes increasingly

harder for agents to search. Though it is impossible to sketch a higher dimensional space,

Figure 2.4 provides a stylized representation of the solution space as we vary K. 22 In this

paper, we focus on the 0 < K < N − 1 regime. In the context of scientific problem solving,

we can think of these binary strings as different research approaches to a topic of scientific

inquiry, and the N digits of each string as possible components of these approaches, e.g.

research questions, lab instruments, standards of induction, etc. The epistemic significance

of an approach, then, depends on how well its components work together.

22Note that though the figure is two dimensional, it does not represent the problem where N = 2. Rather,
it provides a stylized representation of the complexity of the problem asK increases, for an unspecifiedN > 2.
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I now turn to the network structure and behavioral rules of my model. The model I construct

is a variation of Lazer and Friedman (2007)’s, with the addition of asymmetric evidence

sharing.

At the start of each simulation, we have 100 agents, connected to each other via a directed

Erdős-Rényi random network with a probability of connection b, as generated by the algo-

rithm in Footnote 19.23 This means that each agent on average has 100 · b neighbors. I

divide the agents into two subgroups, the withhold group and the share group. Every agent

is randomly assigned a starting solution, in the form of a binary string of length N .

Every V rounds, the epistemic community goes through social learning.24 When this hap-

pens, each member of the withhold group shares their solution and its score with their

in-group neighbors, and each member of the share group shares their solution and its score

with all their neighbors. Then, every agent in the community looks at all solutions shared

with them, and chooses the solution with the highest score to copy, if it is higher than their

own.25 If their own score is higher than all those shared with them, then the agent goes

through a local search. This means that they randomly choose a bit in their binary string to

alter (1 to 0 or 0 to 1), and, if the altered string has a higher score, they switch to that so-

lution. Otherwise, they maintain their current location. In other rounds (rounds indivisible

by V ), each agent conducts a local search to try to improve their score. In scientific prob-

lem solving, local searches represent situations where each scientist or lab tries to improve

their own research approach by making changes to one component of their approach. Note

that when V = 1, agents undergo social learning every round. I simulate the model for 200

23I use directed networks to allow for situations where an agent is aware of a solution of another agent, but
not vice versa, even if they are in the same group. The results I report does not depend on the directedness
of the network structure.

24I start the simulation at round 1, and require that the community go through social learning when the
current round is divisible by V . This ensures that agents go through a few rounds of local search before
starting social learning, unless V = 1.

25If there are multiple solutions with the highest score, they randomly select one to copy.
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rounds. As we will see, in most simulations, the community reaches stable behaviors much

more quickly.

In the NK landscape model, we have a community of agents searching in a vast epistemic

landscape with multiple “peaks,” so depending on how agents search, they may fail to ever

discover the global optimum. There are two characteristics that distinguish the NK landscape

model from the bandit model. First, instead of the two options considered in the bandit

model, in the NK landscape model we have a myriad of solutions.26 Second, in the NK

landscape model, each solution’s epistemic significance is readily known to an agent who

chooses it, whereas in the bandit model both options are probabilistic, making their success

rates harder to estimate. The exploration and exploitation trade-off for agents in this model

is thus the following: do they exploit the epistemic significance of their current solution, or

do they keep exploring the landscape in the hope of finding a better solution? Many authors

(e.g. March (1991); Lazer and Friedman (2007); Fang et al. (2010)) find results similar to

the Zollman effect in the NK landscape model, and these results are empirically confirmed to

some extent (Mason and Watts, 2012; Derex et al., 2018). That is, they find that in the NK

landscape model too, a less connected community may end up with better solutions. This is

because in more connected networks, agents may quickly settle onto a local optimum, thus

failing to explore better alternatives elsewhere. In less connected networks, agents retain a

diverse range of solutions for longer, and thus may ultimately discover better solutions.

Simulating the asymmetric evidence-sharing dynamics in the NK landscape model, therefore,

serves as an important robustness check. Moreover, we may think that many of the real

scientific problems involve a wide range of probabilistic options (Wu and O’Connor, 2023),

not just a wide range of certain options, as in the case of the NK landscape model, or a limited

range of probabilistic options, as in the case of a two-armed bandit model. A replication of

my qualitative results here may thus increase our confidence that similar results would hold

26In the N = 20 case considered in this paper, there are 1, 048, 576 solutions.
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in a model that combines features of the bandit model and NK landscape model.27 As I show

shortly, the qualitative results exhibit similar patterns across the two modeling paradigms,

though some results are more robust than others.

Before presenting the results, it is important to note another salience difference between

the NK landscape model and the bandit model. In the NK landscape model, some high-

performing solutions are only accessible if agents explore from certain other solutions via

local search, so agents concentrating on one patch of the landscape may not ever discover

promising solutions in other regions. In the bandit model, however, different options are

completely independent from each other. This fact is relevant in explaining some results

below.

2.3.1 Results and Discussions

I run the model 1, 000 times for each parameter combination:

• N : 20;28

• K: 5, 10, 15;29

• V : 1, 3, 5;

• Proportion of the withhold group (d): .2, .4, .6, .8;

• Probability of connection in directed Erdős-Rényi random networks (b): .4, .6, .8, 1.30

27Such models may take the form of a bandit model with sufficiently many arms, or an epistemic landscape
model where the score of each solution is probabilistic. I leave the detailed modeling work to further research.

28N here is different from n in §2.2.1. n is the number of tests per round in the bandit model.
29K here is different from k in §2.2.1. k is the number of agents in the bandit model.
30When p = 1, the network structure is complete.
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Figure 2.5: N = 20, K = 5, V = 1, d = .8, b = .6. 1, 000 simulation runs. All three groups
reach stable scores after 25 rounds.

In addition, for each parameter combination, I run the model of a communist community

where everyone shares with all their neighbors.31 As noted before, each community has 100

agents. The results I present are robust across parameter values unless otherwise noted.

The first result is that the withhold group ends up having better scores on average than

the share group. This result always holds because the withhold group has the option of

switching to the better solutions from the share group, but not vice versa. Because of this,

the withhold group always ends up with at least as good a score as the share group at the

end of each simulation.

For almost all (> 97%) parameter combinations, the share group ends up having worse scores

on average than the communist community. This is because the share group is smaller in

size than the communist community and thus suffers from two epistemically detrimental

consequences. First, the initial solutions present in the share group are not as diverse as in

the communist community, so high scoring solutions may be “farther away” from agents in

31This is equivalent to Lazer and Friedman (2007). For ease of comparison, the two communities always
search in the same solution space, and have exactly the same random network structure and initial solutions,
all of them randomly generated for each simulation.
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the share group. Second, agents in the share group on average have fewer neighbors than

agents in the communist community. So when an agent in the share group and an agent

in the communist community both have the best solution among their neighbors, it takes

longer for the neighbors of the former agent to conduct a thorough local search for better

solutions. In the face of unpromising results in early local search, then, these agents may

give up and switch to another solution from elsewhere in the community. Figure 2.5 shows

the average scores per round for different groups.

For most sets of parameter values (> 56%) the withhold group ends up with better scores

on average than the communist community. When this happens, the withhold group ben-

efits from the extra exploration done by the share group, while the communist community

converges to a suboptimal solution too quickly. This is a similar mechanism for epistemic

advantage as that identified in the bandit model, but the withhold group’s advantage here

is not as robust.

To see why, let us consider a simplified case. Suppose that we have four solutions, A, B,

C, and D. Suppose further that A < B < C < D in epistemic significance, but D is only

available when we explore from B, and C is only available when we explore from A. Now

suppose that A is the current best solution among the share group, and B is the current

best solution among the withhold group. Then in cases where the share group discovers C

before the withhold group discovers D, the withhold group would switch to C prematurely,

without ever discovering D. Curiously, when a communist community encounters this case,

they would not make the same mistake, since agents would choose B over A first, and the

community would, after sufficient local searches, settle on D. Qualitatively similar cases can

arise in the NK landscape model, and in these situations, the withhold group learns worse

than the communist community. The same situation does not apply to the two-armed bandit

problems.
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Figure 2.6: N = 20, K = 10, 1, 000 simulation runs. Gray-scale version available upon
request.

For this reason, when d is small, i.e. when the withhold group is in the minority, the withhold

group is more likely to lose its epistemic advantage compared to the communist community.

The withhold group does not have enough agents to do as thorough a local search around the

most promising solution as the communist community, given the vast number of possible local

variations on a solution. They may instead give up on their local search if the more populous

share group reaches a seemingly promising solution in the meantime. As d increases, the

withhold group becomes more effective at local search, and it gains epistemic advantage.32

Moreover, as V increases, i.e. when social learning becomes less frequent, the withhold

group tends to have less of an epistemic advantage. To understand this, we observe that

when V = 1, because of the quick social learning, the communist community is more likely

to prematurely settle down to a local optimum, without ever exploring other regions of

the landscape. In contrast, in the withhold-share community, diverse solutions are still

present even when social learning is fast, because the withhold group does not share. In

cases where solutions among the share group are initially unpromising, its members can

keep exploring them, and the withhold group benefits if the share group’s exploration proves

32The withhold group does better than the communist community 100% when d = .8.
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fruitful. However, when V increases, both communities know more about the landscape

terrain before commencing social learning. In this case, the communist community simply

has more agents conducting local searches around promising solutions after social learning,

making it more likely that it would find something.

Finally, as K increases, the withhold group tends to lose its epistemic advantage over the

communist community as well. The reason for this is slightly different from before. When

K grows, the landscape becomes increasingly chaotic, and the epistemic communities do not

typically learn very well at all.33 In these “hostile” landscapes, it is again better to have

more agents conduct targeted local exploration around one solution, as in the case of the

communist community, than dividing up labor such that neither subgroup has enough agents

to do thorough local searches, as in the case of the withhold-share community. One might

find this result surprising because previously Rosenstock et al. (2017) finds that the Zollman

effect is the most robust in hard bandit problems, but here it seems that the opposite holds in

the NK landscape problem. This conclusion may be too quick, because here what is holding

the withhold-share community back is the insufficient local exploration caused by the size of

the subgroups, not a lack of global diverse solutions. This nonetheless points to a significant

difference between the bandit model and the NK landscape problem.

Figure 2.6 shows the degree of the withhold group’s epistemic (dis-)advantage over the

communist community as we vary several parameters.

2.4 Epistemic Prisoner’s Dilemma

Results from §2.2-§2.3 suggest that a subgroup that withholds evidence can have epistemic

advantages over the rest of the epistemic community that shares, and over a communist

community in many cases. If scientists are purely motivated by the truth of their own
33When K = 15, all communities and subgroups’ average final scores do not exceed .4.
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findings, the withhold-share dynamics gives rise to what one might call an Epistemic Weak

Prisoner’s Dilemma (EWPD).34

The game is set up as follows. We have two groups who are the primary players of the

game. Group members internally share their evidence with each other. On top of that,

each group has two strategies, sharing evidence with out-group members (Share), and with-

holding evidence from out-group members (Withhold). Each group’s payoff is epistemic,

corresponding to the probability that the group converges to the truth in that situation.

Specifically, the epistemic payoffs in Tables 2.1 and 2.2 are calculated from the frequencies of

successful learning measure from the bandit model in §2.2.35 By assuming that members of

the community are already sorted into different groups or coalitions, this game is an instance

of a cooperative game (see §9 of Ross (2021)). Because of this assumption, the game may

be interpreted to represent certain groups (e.g. industrial scientists) better than others (e.g.

academic scientists), as I will discuss shortly.

Symmetric EWPD Group 2 (1/2)
Share Withhold

Group 1
(1/2)

Share .58, .58 .56, .63
Withhold .63, .56 .56, .56

Table 2.1: k = 12, n = 1, PB = .49. 10, 000 simulation runs. Groups 1 and 2 are both 1/2
the size of the community.

Asymmetric EWPD Group 2 (1/3)
Share Withhold

Group 1
(2/3)

Share .58, .58 .57, .61
Withhold .67, .55 .57, .55

Table 2.2: k = 12, n = 1, PB = .49. 10, 000 simulation runs. Group 1 is 2/3 the size of the
community, and Group 2 is 1/3.

In the EWPD, each group receives the highest payoff when they withhold evidence from the

other group while the other group shares with them. Their payoffs are the worst when the
34In so doing, I provide new examples of how game theory can be used as a tool for the social epistemol-

ogists, see Zollman (2021).
35For Share-Share, I calculate the frequency of successful learning for the communist community. For

Withhold-Withhold, I calculate the same frequency for an isolated communist community of a smaller size.
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other group withholds evidence from them (no matter what they themselves choose to do),

and their payoff is intermediate when both groups share.

There are two features of this game worth noting. First, the game is symmetric only when

each group is exactly half of the entire community in size (Table 2.1); otherwise, the game is

asymmetric (Table 2.2). In the latter case, the group that is the majority in size would gain

more when they withhold evidence while the other group shares, and lose less when both sub-

groups withhold. This may seem counter-intuitive, given that in a public goods game, where

players decide whether to contribute to a public pot which will then grow and be distributed

to everyone, players have the incentive to be in the very few that withhold. However, in the

EWPD, members of each group still share with each other, and this mechanism is absent in

a public goods game. Furthermore, social knowledge is unlike public goods. It is not the

case that the more people share, the better the group is at learning—the Zollman effect tells

us otherwise.

The second feature is that this prisoner’s dilemma is weak, since the situation where both

groups withhold is a weak Nash equilibrium, not a strict one. The situations where one group

switches their strategy (top right and bottom left) are two additional weak Nash equilibria

of this game, and they are both Pareto improvements from the situation where both groups

withhold, since one group would gain and no groups lose.36 Given this feature, we might

imagine a new game where both groups are slightly altruistic, and their payoff is calculated

by .9 of their own original epistemic payoff, plus .1 of the other group’s original epistemic

payoff in the same situation. Then, both situations where one group withholds and the other

shares are (strict) Nash equilibria in this game, and Withhold-Withhold is no longer Nash

(see Table 2.3). One might call this new game an Epistemic Hawk-Dove. Furthermore, we

might imagine another game where only one group is slightly altruistic. The result is an

36The EWPD can also be seen as a weak Hawk-Dove, with Withhold-Withhold as an additional weak
Nash equilibrium.
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Asymmetric Epistemic Hawk-Dove (Table 2.4), and the situation where the altruistic group

shares and the other self-interested group withholds is the only strict Nash equilibrium.37

Epistemic Hawk-Dove Group 2 (1/2)
Share Withhold

Group 1
(1/2)

Share .58, .58 .567, .623
Withhold .623, .567 .56, .56

Table 2.3: New game constructed from Table 2.1. Both groups are slightly altruistic.

Asymmetric Epistemic Hawk-Dove Group 2 (1/2)
Share Withhold

Group 1
(1/2)

Share .58, .58 .567, .63
Withhold .623, .56 .56, .56

Table 2.4: New game constructed from Table 2.1. Group 1 is slightly altruistic.

One might take this Asymmetric Epistemic Hawk-Dove to explain our current situation

where slightly altruistic academic scientists generally share their evidence while self-interested

industrial scientists withhold.38 However, the strength of this explanation depends on

whether we can successfully interpret academic scientists and industrial scientists as group

agents able to play the two strategies. While the industrial scientists have centralized

decision-making power, it is difficult to coordinate decentralized academic scientists to play

the Withhold strategy, especially given that they have additional credit incentive to pub-

lish.39 The assumption that academic scientists can be thought of as a group agent in a

cooperative game may not be realistic. Instead, our current situation may be closer to one

where academic scientists are stuck with playing the Share strategy, and the industrial sci-
37The other Nash equilibrium, where the altruistic group withholds and the self interested group shares,

is weak.
38For those who are skeptical that academic scientists are altruistic, we can instead introduce academic

scientists’ credit incentive to the EWPD by adding a small payoff to one group in situations that they share,
representing the recognition they receive when they publish. The result would be an asymmetric Hawk-Dove
as well. Furthermore, we can introduce industrial scientists’ financial incentive to the game by adding a small
payoff to the second group in situations that they withhold. The two additions together would produce a
game where the situation where the first group shares and the second group withholds is the only Nash
equilibrium, strict or weak. Thanks to Hannah Rubin for thinking through this point with me.

39Thanks to Cailin O’Connor for raising this point. The case for classified scientists is a bit complicated.
We might think that they are the opposite of academic scientists, since they have centralized decision-making
power, but are stuck with the Withhold strategy. Analyzing how this complicates sharing dynamics is beyond
the scope of this paper.
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entists, having centralized decision-making power, choose to Withhold to maximize their

epistemic payoffs.

Given that industrial scientists can be interpreted as group agents, are there ways in which

industrial scientists may come to share from a game theoretic perspective? There is a large

literature on how cooperative behaviors could evolve in a prisoner’s dilemma (See, e.g.,

Chapter 6 of O’Connor (2020) for an overview). The key is that when players’ actions

become correlated—when it is likely that sharers only interact with sharers and withholders

with withholders—cooperative behaviors would be expected to evolve over time. One way

to achieve correlated interaction is when players keep track of the actions of other players,

and reciprocate their actions accordingly (See, e.g., Trivers (1971); Skyrms (2001); Binmore

(2005)). For instance, industrial scientists may start by sharing their evidence, then on

successive rounds choose the action that their partner performed before (a strategy called Tit-

For-Tat). Other ways to achieve correlated interaction include secret handshakes (sending

a signal to identify cooperators before playing, see Robson (1990)), network reciprocity

(players disproportionately interact with certain “neighbors” and adopt a reciprocal strategy,

see Alexander (2007)), etc. Under these mechanisms, cooperative behaviors are expected to

evolve. But note that this analysis only outlines how mutual sharing can be evolutionarily

advantageous between an industry group and other similarly agential groups (e.g. other

industry groups). When interacting with a decentralized group that is stuck with the Share

strategy (e.g. academic scientists), the best action for an industry group is still Withhold.

Another possibility comes from the observation that in my models, the withholding agents

are mutually sharing, but in reality, industrial groups may not share with each other. One

might think that if there are multiple mutually withholding industrial groups, then even

though they each learn better than the sharing academic scientists, they could reach even

better beliefs if the whole community comes to share. This reasoning is (surprisingly) not

supported by simulation results. Suppose that we have an epistemic community with three
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equal-sized subgroups, X that shares with everyone, and Y and Z that only share with in-

group members and no one else. My simulation results show that in many cases Y and Z reach

the true belief even more frequently than in the situation where X, Y, and Z are all mutually

sharing.40 In other words, the epistemic advantage that Y and Z gain from free-riding off of

X’s exploration is strong enough that they can even outperform a communist community of

a larger size. Furthermore, even if Y and Z would perform better if the whole community is

communist, they would perform even better if they mutually share but continue to withhold

from X, especially when X is stuck with the Share strategy.

Finally, throughout the section, I relied on simulation results from the bandit model in

§2.2 to construct the payoff tables, but we know very little about the problem space of our

scientific inquiries (Wu and O’Connor, 2023). As §2.3 shows, for a considerable portion

of the parameter space, especially when the withhold group is in the minority, it does not

end up scoring better than the communist community in the NK landscape problem. If

industrial scientists constitute a minority of the scientific community, then since they may

not have enough powers to conduct thorough local searches, perhaps it would be rational

for them to share. Then, the base game may instead be more like a stag hunt where mutual

sharing offers the best payoffs. However, industrial science is rather sizable. For instance,

in the US, industry conducts 75% and funds 72% of research and experimental development

in 2019, according to the National Science Foundation (Boroush and Guci, 2022). In this

case, industrial scientists would still gain an epistemic advantage if they withhold. Moreover,

there may be other advantages associated with withholding than the ones modeled here, such

as reaching conclusions faster so they can reap financial benefits sooner. These additional

advantages may shift the game back to a prisoner’s dilemma, even if the problem space is

more like an NK landscape.

40I tested this situation in the bandit model with 18 total agents, where PB = .45 and .49, and n = 1.
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2.5 Conclusion

In this paper, I use network models to show that, scientists who withhold evidence can obtain

epistemic advantages. My results suggest that industrial scientists and classified researchers

may have additional epistemic incentives to withhold their work, even if the academic credit

economy does not apply to them in the same way. I further use my modeling results to

construct epistemic games that illustrate the underlying sharing dynamics. Before closing, I

will briefly discuss some implications for other models of scientific sharing, connect my models

to topics in social epistemology, note limitations of my analysis, and suggest directions for

future work.

To start, my modeling results may complicate previous credit-based models of scientific

sharing. Both Strevens (2017) and Heesen (2017)’s models assume that the probability

that a scientist would make a discovery remains fixed regardless of whether they share

during the process of discovery. But my results show that the probability of a scientist

making the right discovery (as in §2.2) or an epistemically more significant discovery (as

in §2.3) does depend on whether they share. In the context of Heesen (2017)’s multi-stage

model, if agents consistently share throughout the process of discovery, then they may risk

prematurely settling on a worse theory, without ever discovering better ones. Furthermore,

in the situation where one agent consistently withholds while the rest of the community

shares, then even though the sharing agents can publish and claim credit for intermediate

results as Heesen (2017) argues, the withholding agent may reach the final stage much faster,

likely with epistemically more significant findings, which could bring them even more credit.

Moreover, my models offer new support for the independence thesis in social epistemology,

which states that individual and group rationality can come apart (Mayo-Wilson et al.,

2011).41 Indeed, in my models, a subgroup may be epistemically better off if they withhold

41See Bradley (2022) for an analysis of different versions of the independence thesis.
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evidence, but the epistemically optimal situation for the entire community is when every-

one shares. The action that maximizes a subgroup’s epistemic payoff and the action that

maximizes the community’s epistemic payoff come apart.

My analysis admittedly has a few limitations. First, agents in both models all choose the

best available epistemic option when they undergo social learning. However, recent work

(e.g. Kummerfeld and Zollman (2015); Wu (2023a)) shows that alternative behavioral rules

can significantly change epistemic outcomes. Combining these alternative behavioral rules

with the asymmetric evidence-sharing dynamics is a worthwhile direction for future research.

Moreover, I have only tested a small range of cases where there are multiple withhold groups.

It is worthwhile to conduct a fuller analysis with more than two groups, since my limited

testing shows that the dynamics may be more complicated than expected.

Furthermore, while it is clear from my analysis that epistemic consideration alone does not

incentivize a group to share, I have said very little about what to do as a result. My

analysis may support policies that require industrial scientists to share for the benefit of

the community, or mechanisms that make academic scientists more agential as a group, or

recommendations that ensure a small amount of exploration in the community to reduce

the epistemic drawbacks of mutual sharing. We need models that combine instrumental and

epistemic incentives of scientific sharing before fuller recommendations are made.

Finally, one may find the differential robustness levels between the bandit models and the NK

landscape model independently interesting from a philosophy of modeling perspective. It is

worthwhile to explore whether there is a similar difference in robustness for other mechanisms

that lead to transient diversity (e.g. those reviewed in Wu and O’Connor (2023)). This can

offer insight into how the exploration and exploitation trade-offs differ in these models, and

how results obtained from either model can be used to represent and explain reality.
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Chapter 3

Better than Best

3.1 Introduction

When solving a complex problem in a group, should group members always choose the best

available solution that they are aware of? This question arises when there is a group of

people coming together to figure something out. They may be solving a scientific problem,

or generating social or cultural innovation. If they care about their epistemic success, should

they always choose the epistemically most successful option at the moment?

In this paper, I build simulation models to show that, perhaps surprisingly, a group of

agents who individually randomly follow a better available solution than their own can end

up outperforming a group of agents who individually always follow the best available solution.

The reason for this result relates to the concepts of transient diversity (Zollman, 2010; Wu

and O’Connor, 2023; Smaldino et al., 2022) and cognitive division of labor (Kitcher, 1990;

Weisberg and Muldoon, 2009; Thoma, 2015) in epistemic communities. The “better” strategy

preserves a diversity of practice in the community for some time, so the community can survey
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a range of solutions before settling down.1 The “best” strategy, by contrast, may lock the

group in a suboptimal position that prevents further exploration. In a slogan, “better” beats

“best.”

My models are adapted from Lazer and Friedman (2007)’s model where a network of agents

is tasked with solving a sophisticated epistemic landscape problem called the NK landscape

problem. Here, agents search in a space with multiple “peaks.” They only know the solutions

of their neighbors on the network, and their own results of (limited) local exploration, so they

may fail to ever discover better solutions globally. Agents in the model face an exploration

and exploitation trade-off: do they exploit the solution they currently have and the local peak

nearby, or do they explore other regions of the landscape for possibly better solutions? In my

models, the “better” strategy allows for a high degree of exploration within the community,

even though at every single time step, every agent’s expected payoff is strictly no greater

than what they would have gained were they follow the “best” strategy.

This result is significant because first, it reveals a tension between individual and group

decision-making. Here, groups learn better in the long run when their members do not

always choose the best for themselves in the short run. This tension itself is not new in social

epistemology. For instance, Mayo-Wilson et al. (2011) proposes the Independence Thesis,

which states that individual and group rationality may come apart. My results demonstrate

this thesis in another modeling paradigm (c.f. the bandit problem in Mayo-Wilson et al.

(2011)).

Second, many feminist philosophers of science (Longino, 1990; Fehr, 2011) suggest that

different social groups tend to adopt different approaches to problem-solving, which can be

represented by different starting points on an epistemic landscape. The “better” strategy

explored in this paper, then, would to be a good way to preserve these diverse approaches.

1Though, the “better” strategy preserves a diversity of practice only when social learning is not too
frequent (see §3.3).
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Some of the solutions brought by marginalized groups may not seem promising, perhaps due

to a historical lack of resources, but they may nevertheless become epistemically significant

after explorations.

The model described here also makes technical contributions to the modeling science litera-

ture. First, the modeling paradigm I use, the NK landscape model, is very under-explored

in the philosophy of science.2 But I think this model represents a different yet (I will argue)

important type of scientific inquiry. Second, the “better” strategy I introduce here is a new

mechanism for transient diversity (see, again, Wu and O’Connor (2023); Smaldino et al.

(2022)). Moreover, this strategy, unlike other mechanisms, never makes an individual worse

off from one round to another, and yet the community still performs relatively well. This

may be a more practical strategy for generating epistemically-beneficial diversity.

This paper is organized as follows. In §3.2, I first provide a general interpretation of epistemic

landscape models in the context of scientific problem solving. I then introduce the details

of my model, including the two behavioral rules: “better” and “best.” In §3.3, I present the

main simulation results of this paper. In §3.4, I consider a variation of the model: a mixed

community where some agents adopt the “better” strategy, while others adopt the “best.” In

§3.5, I draw implications of the results in the social and cognitive diversity literature.

2With the exception of Wu (2022b); Alexander et al. (2015). Though, the NK landscape model, with or
without a network structure, is more widely used in theoretical biology (Kauffman and Levin, 1987; Kauffman
and Weinberger, 1989), cultural innovation (Lazer and Friedman, 2007; Gomez and Lazer, 2019; Barkoczi
and Galesic, 2016), and organizational design (Ethiraj and Levinthal, 2004; Siggelkow and Levinthal, 2003;
Marengo et al., 2000).
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3.2 The Model

3.2.1 Interpreting the Epistemic Landscape Model

A landscape model contains a large number of points with varying heights. In the context

of scientific problem-solving, we can use a landscape model to represent a group of scientists

coming together to solve a problem by trying different research approaches. Each approach

is a point on the landscape and has a score associated with it, representing its “epistemic

significance,” e.g. how truth-conducive or fruitful it is. I interpret research approaches on

such an epistemic landscape broadly. They can have many components, including research

questions, methods, skills, instruments, etc. (Thoma, 2015).

Epistemic landscape models can represent important aspects of scientific problem solving—

scientists constantly communicate with others in their community and decide whether they

should stick with the research approach they currently have or try new ones, either by

exploring on their own or adopting an approach from the community. Epistemic landscape

models, especially lower-dimensional ones with one or two peaks, have been used in the

philosophy of science literature to model scientific problem-solving (Hong and Page, 2004;

Weisberg and Muldoon, 2009; Thoma, 2015).

3.2.2 The NK Landscape Model

The NK landscape model is a sophisticated multi-dimensional landscape with multiple peaks.

This model was originally developed in theoretical biology to study how different variants of a

gene work together to produce fitness (Kauffman and Levin, 1987; Kauffman andWeinberger,

1989). The solution space is N -dimensional, with binary strings (consisting of 0s and 1s) of

length N as its points. For instance, if N = 3, then 001 is a point on the landscape, so is
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101, 010, etc. Then, an algorithm with parameter K(0 < K < N − 1) is used to assign a

score between 0 and 1 to each point.3 In the context of scientific problem-solving, we can

think of each of these dimensions as a component of a research approach (research questions,

tools, skills, etc.).4 The score of a research approach then depends on how well different

components work together in synergy.

Roughly speaking, the parameter K in the NK landscape model determines how rugged the

landscape is and how correlated “nearby” scores are. As K increases, the landscape becomes

increasingly difficult to search. Though it is impossible to sketch a higher dimensional

space, Figure 3.1 provides a stylized representation of the solution space as we vary K.5

When K = 0, the landscape is smooth with one single peak, and when K = N − 1, the

landscape is totally chaotic, with the value of every point totally uncorrelated with nearby

points. The most interesting space is when 0 < K < N − 1. The landscape becomes

rugged with multiple peaks, with nearby points somewhat correlated with each other. We

will focus on this parameter space for the rest of the paper, since we can use it to represent

complex scientific problems for which similar research approaches are somewhat correlated

in epistemic significance. In this regime, it is often the case that a high-scoring solution is

only accessible when exploring from a limited patch of the landscape.

Since the NK landscape model contains multiple peaks and a large number of solutions,6

it contains the following exploration and exploitation trade-off: do agents exploit the epis-

temic significance of their current solution (and the local optimum nearby), or do they keep

exploring the landscape in hope of finding better solutions? If exploration is not enough,

then agents may be stuck in local optima, without discovering more promising solutions. If

3See Appendix B for details of the algorithm.
4That each dimension only has binary options is an idealization. Investigating whether the results hold

when this idealization is relaxed is an interesting follow-up project.
5This figure represents a landscape where N > 2, though it looks like a one-dimensional landscape.
6In the N = 20 case considered here, there are over a million solutions.
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Figure 3.1: Stylized Representation of the Solution Space (Lazer and Friedman, 2007).

exploration is too much, then agents waste time wandering around, trying out potentially

low-scoring options.

3.2.3 Network Structures and Initialization

Having specified the solution space of the NK landscape problem, we now turn to the network

structure of the model. At the start of each simulation, I have two separate communities

of 100 agents, connected to each other via a directed Erdős-Rényi random network. This

means that for every agent, the probability that it would form a link with another agent is a

fixed number p in [0, 1], and the links formed are not necessarily bidirectional. Every agent

is assigned a starting solution, in the form of a binary string of length N . To facilitate direct

comparisons, the two communities have identical initial conditions, including the solution

space, starting solutions for individual agents, and network structure.
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3.2.4 Behavioral Rules

Next, I introduce the two behavioral rules, “best” and ”better.” All agents in one community

follow the ”best” behavioral rule, and all agents in the other community follow “better.” The

only difference between the two behavioral rules is that, during social learning, agents with

the “best” rule choose the best solution they are aware of, and agents with the “better” rule

randomly choose a better solution than their own.

According to the “best” behavioral rule, in every V round (1 ≤ V ≤ 5), every agent chooses

the best-performing solution among all their neighbors’ solutions to copy (if there are multiple

with the same highest score, they randomly select one of the highest to follow).7 If they

themselves have the best score among their neighbors, then they conduct a local search to

try to improve their score. This means that they randomly choose a bit in their solution

to change (1 to 0, and 0 to 1), and if the change brings a higher score, they switch to

that solution.8 Otherwise, they maintain their current solution. In other rounds (rounds

indivisible by V ), they do a local search to try to improve their score. We call V the

frequency of social learning. This behavioral rule is the same as the one explored in Lazer

and Friedman (2007).

According to the “better” behavioral rule, every V round, every agent randomly chooses a

better-performing neighbor and copy their solution.9 If they themselves have the best score

among their neighbors, then they do a local search to try to improve their score. In other

rounds, they do a local search.

7Each simulation starts at round 1, so agents do not go through social learning immediately unless V = 1.
8As a follow-up, one may be interested in models where agents alter more than one bit during local

search. This may represent particular creative or resourceful individuals..
9Since an agent chooses a better performing neighbor to follow, if there are multiple neighbors with the

same solution, the probability that this solution will be selected is proportionally increased. This is different
from randomly choosing a better performing solution to follow.
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Figure 3.2: N = 20, K = 10, V = 3, p = .5. Both communities are stable after 30 rounds.

In the context of scientific problem-solving, we can think of social learning as when scientists

improve their own approaches by learning from their friends and collaborators. The “best”

behavioral rule requires scientists to always adopt the best solution during social learning,

and the “better” behavioral rule requires scientists to randomly choose a better one to mimic.

Local search, on the other hand, is when scientists try to improve their own research approach

by making small adjustments to it. Because it is typically the case that a high-scoring

solution is only accessible from a limited patch of the landscape, agents can only discover

their local peak when conducting local search, and social learning is the main mechanism

for agents to move to other regions of the landscape.

3.3 Results

I run the model for long enough so that communities stabilize in their solutions. I set N = 20

and vary K, V , and p. I run 1, 000 simulations for each parameter combination and present

the average results.
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Figure 3.3: N = 20, K = 5, V = 5. Scores shown are average final scores of communities.

The main result is that the community with the “better” behavioral rule ends up having

a higher score than the community with the “best” behavioral rule (Figures 3.2 and 3.3).

However, the “best” community performs better at the beginning of a simulation, and in

general is faster at converging to a consensus solution.10 This is because a community with

the “best” behavioral rule would quickly converge to the vicinity of the most promising

solutions that they are aware of, while the “better” community would explore a variety of

decent options and their close-by local peaks before building consensus, generating a diversity

of practice. It takes the “better” community longer to survey the landscape, but its members

are less likely to be stuck in low-scoring peaks.

This trade-off between speed and accuracy in social learning has previously been explored

in models about how network connection impacts learning (Lazer and Friedman, 2007; Zoll-

man, 2007, 2010). These models (from two different paradigms) show that a more sparsely

connected community learns more accurately but more slowly, precisely because the com-

10Here I only present agents’ eventual epistemic significance, their average performance per round, and
their speed of convergence. For space reasons, I do not investigate other measures, e.g., an agent’s average
epistemic significance across rounds (Pöyhönen, 2017).
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munity experiences a transient period during which a diversity of options is being tested. A

more connected community is more likely to settle for an inferior option too early.

The present model introduces more texture to these previous results, since in a sense, the

“better” behavioral rule seems to be an effective strategy to counter-balance the dangers of too

much connection. As Figure 3.3 shows, the learning accuracy of the “best” community drops

significantly as the network becomes more connected. But the “better” community maintains

a high level of learning accuracy even as the community becomes more connected. Since

limiting connectivity has been criticized as an impracticable way of improving epistemically-

beneficial diversity (Rosenstock et al., 2017), encouraging individual community members to

adopt something that mimics the “better” behavioral rule may be a plausible alternative.

While the result of “better” beating “best” is fairly robust overall, it is less robust when social

learning happens every round.11 To see why, let us consider a simplified case. Suppose that

both the “better” and the “best” communities have A, B, and C as their starting solutions.

Further, suppose that solution D is a local peak accessible from local search from B, and E is

a local peak accessible from local search from C. Finally, suppose that A < B < C < D < E

in epistemic significance. In this scenario, the “better” community would be split between

B and C first, and in cases where the agents with B solution discover D before agents with

C solution discover E, the community would converge to D, without ever discovering E.

In the “best” community, however, agents would all quickly converge to C first, and with

sufficient local exploration, would discover E. When social learning slows down, this scenario

happens less often, because agents in the “better” community would have enough “time” to

explore the vicinity around both B and C sufficiently, so it is more likely that both D and

E are discovered before the next social learning. This is a simplified case, but qualitatively

similar situations happen with non-negligible probability in the full complex model. This

suggests that in order for a diversity of practice to be beneficial to social learning, it has

11The result holds more than 74% across all parameter combinations, and 100% when V > 1.
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to be sustained in the community for some time to allow for sufficient local exploration;

infrequent social learning makes this possible.

3.4 Variation: Mixed Community

I now introduce a variation of the model: a mixed community where some agents adopt the

“better” strategy, while others adopt the “best.” In this community, even though all agents

eventually converge to the same solution, agents who adopt the “best” solution reap more

epistemic benefits at the beginning, as compared to agents who adopt “better” (Figure 3.4).

Comparing this community with the two communities studied in §3.3, we see that the mixed

community ends up outperforming the “best” community, and does not do as well as the

“better” community (Figure 3.4). The mixed community outperforms the “best” community

precisely because of the agents who adopt the “better” strategy, and that creates a transient

diversity of approaches in the community. The agents that adopt the “best” strategy here are

essentially free-riding on the epistemic benefits that the “better” strategists provide. In so

doing, they get the best of both worlds—they do (relatively) well eventually, while adopting

high-scoring solutions in early game.

This creates a dilemma: the “better” strategists are useful to have in the community, but

those agents may not be epistemically incentivized to keep their strategy. How should we

encourage this epistemically exploratory behavior that benefits the community? I think

promising solutions involve structuring the community in such a way that some agents find

the “better” strategy attractive for other (intrinsic or extrinsic) reasons. For instance, Nguyen

(2022) argues that intellectual playfulness—a disposition to try out new ideas for fun—

functions as an intellectual “insurance policy” against what he calls epistemic traps. This,

in a sense, is in line with my results—if some scientists are intrinsically motivated to try
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Figure 3.4: N = 20, K = 10, V = 3, proportion of the “better” group=.4. All communities
are stable after 30 rounds. “Mixed” denotes the average score of the mixed community;
“mixed best” denotes the average score of the “best” strategists in the mixed community; and
“mixed better” denotes the average score of the “better” strategists in the mixed community.

out exploratory solutions for the fun of it, then having them in an epistemic community

and learning from them can be epistemically beneficial to the community.12 Another idea

is to offer extrinsic incentives for exploratory ideas, such as coordinating funding agencies

such that some amount of exploratory work is always funded and promoted. Moreover,

various authors argue that even without dedicated funding, credit considerations alone may

incentivize scientists to pursue exploratory research, since fewer individuals work on these

topics (Kitcher, 1990; Strevens, 2003).

12While they share an exploratory attitude, an intellectually playful person completely disregards the
truth value of the belief system they try out, but a “better” strategist still chooses a solution that is higher in
epistemic significance. However, if some agents in the community choose to “randomly walk” in the landscape
without any concern for epistemic significance, they will generate epistemically-beneficial diversity too.
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3.5 Coda: Social and Cognitive Diversity

In this paper, I present an epistemic landscape model in which a group of agents who

randomly choose a better solution than their own can outperform a group of agents who

always choose the best available solution. I argue that this result has a natural interpretation

in the context of scientific problem-solving. A group of scientists who entertain a diverse

range of reasonable research approaches for some time can outperform a group of scientists

who always choose the best available research approaches. Before I close the paper, I will

draw some implications of these results in the social and cognitive diversity literature.

First of all, note that the epistemically-beneficial diversity of practice in the main model is

not the same as cognitive diversity. Cognitive diversity is usually understood as the presence

of agents with different cognitive styles—different ways of gathering, processing, or acting on

data (Hong and Page, 2004; Pöyhönen, 2017). The most epistemically successful community

considered in this paper is a homogeneous group of agents who all follow the “better” rule.13

Moreover, even though a mixed community also performs well, it does well by virtue of having

“better” strategists in the community, not by virtue of the diversity in cognitive styles.

Second, as briefly discussed in §3.3, in order for the diversity of practice to be epistemically

beneficial in this model, the diverse range of solutions needs to be sustained in the community

for some time. This allows for sufficient exploration of the local region around individual

solutions, so local peaks are more likely to be discovered in between social learning. This

means that if social learning is too frequent, it brings the same kind of epistemic harm as too

much network connection (c.f. Lazer and Friedman (2007)). Infrequent social learning and

sparse network structures can both ensure that a local region is sufficiently explored before

an agent moves elsewhere.

13This is in line with Weisberg and Muldoon (2009)’s (controversial) result that a homogeneous group of
mavericks perform well.
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Finally, feminist philosophers of science have written extensively about how diverse social

groups tend to have diverse background beliefs and approaches to problem solving (Longino,

1990; Fehr, 2011), which may then be represented by diverse initial patches on an NK

landscape model. If this is right, then the “better” behavioral rule is one way to help

preserve those initially plausible but not outstanding solutions from diverse (social) locations.

Perhaps a solution from some marginalized social group does not stand out initially due to

a historical lack of resources, but a stellar solution may be reachable if we explore in its

vicinity. Moreover, I have also shown that having a diverse range of solutions simpliciter

(more crudely—having diverse bodies in the room) is not enough, exploration in its vicinity

needs to be supported in a sustaining fashion, so that agents do not prematurely switch to

a mainstream approach without realizing the potential of their local perspectives.
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Appendix A

End States of the Generalized Bandit

Model

After 10, 000 rounds, the community typically settles into one of three states, defined below:

• Community convergence to the true belief is reached when, for each agent, the

following three conditions are satisfied: (S1) αA

αA+βA
> αB

αB+βB
; (S2) αA

αA+βA
> PB; (S3)

αB

αB+βB
< PA. The first condition ensures that all individual agents think that option

A performs better than option B. The third condition ensures that agents’ actions

are, for the most part, stable, because agents continue to receive evidence about A.1

The second condition is included for consistency reasons—we will need it as a stability

check in simulations that lead to polarization.2

1Because of the probabilistic nature of this model, this condition does not ensure that individual actions
are always stable when it is satisfied.

2As a technical aside, the “success conditions” listed here are not the analogue of the success condition
discussed in Wu (2022a), in the following sense. In Wu (2022a), each agent’s credence is given by a single
number between 0 and 1, representing their credence in the statement “B is better than A.” Then, an agent
reaches the success condition if this number is > .99 (in that model, B is in fact better than A). For the
success condition in our current model to be analogous to the one before, we need to calculate the probability
that one beta distribution performs better than the other beta distribution and ask whether this probability
is > .99. This amounts to calculating the following formula
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• Community convergence to the false belief is reached when, for each agent,

the following two conditions are satisfied: (F1) αA

αA+βA
< αB

αB+βB
; (F2) αA

αA+βA
< PB.

Condition (F1) says that all agents think that the worse action, B, is better. (F2) is a

stability condition similar to (S3).

• Polarization is reached when, for every member of the withhold group, the success

conditions are satisfied, and for every member of the share group, the failure conditions

are satisfied. Condition (S2) is needed because the withhold group continues to receive

evidence about B from the share group.

Pr(pB > pA) =
∫ 1

0

∫ 1

PA

pA
αA−1(1−pA)βA−1

B(αA,βA)

p
αB−1

B (1−pB)βB−1

B(αB ,βB) dpBdpA.

It turns out that even after simplification, this formula is still too computationally taxing. So I adopted the
current success conditions. See Miller (2015) for details on Bayesian A/B testing.
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Appendix B

The Solution Space of the NK

Landscape Model

I now describe how scores are assigned to solutions in the NK landscape model. I run this

algorithm at the start of each simulation. So even for the same value of N and K, solution

spaces are different in each simulation.

I start with randomly selecting a K-tuple, J = (j1, ..., jK), where j1, ..., jK are integers

between 1 and N inclusive, without repeating. I then generate a valuation function f that

takes binary strings of length K+1 to (0, 1) by assigning each possible binary combination a

random number from (0, 1). For instance, if K = 2, then f(0, 0, 1) = .549, f(0, 1, 0) = .235,

f(1, 1, 0) = .652, etc. would be a valuation function. I randomly generate J and f at the

start of every simulation, and they remain fixed throughout the simulation.

Remember that each solution S is a binary string of length N , i.e. S = (s1, s2, ..., sN), where

si ∈ {0, 1} for 1 ≤ i ≤ N . Each S can now be associated with a score, via the following

function
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F (S) =
1

N
(
N∑
i=1

f(si, si+j1 , ..., si+jK )).

Here, for cyclicity, we set sl = sl−N for l > N . What this function does is to calculate

the score of a point as a sum of the “value” of each bit of the string, while taking into

consideration its interaction with K other bits.1 This allows for correlations among nearby

solutions to be reflected in the final score. The score is then normalized (multiplied by 1
N
).

To give an example of this, suppose that N = 3, K = 1, and J = (1). Suppose further

that f(0, 0) = .235, f(0, 1) = .367, f(1, 0) = .785, and f(1, 1) = .954. Then the score of the

binary string S = (0, 1, 1) is

F (S) =
1

3
(
N∑
i=1

f(si, si+1)) =
1

3
(f(0, 1)+ f(1, 1)+ f(1, 0)) =

1

3
(.367+ .954+ .785) = .702.

In general, every landscape generated is going to have a different maximum score. For ease

of comparison across simulations, I further divide the score of every point by the maximum

score in the landscape to normalize it, i.e. F̃ (S) = F (S)/MaxScore. This way, the highest

score in every landscape generated is 1.

Finally, because of how the NK landscape model is generated, the distribution of scores

is similar to that of a normal distribution, where the majority solutions are moderately

good at solving a problem. This can be unrealistic since usually haphazard solutions to

a problem do not perform well. I thus follow Lazer and Friedman (2007) and apply the

following transformation F̂ (S) = (F̃ (S))∧8 to every score, such that most solutions receive

1In management and organizational science, there is a fairly vibrant literature on alternative functions
called “interaction matrices” that allow for coupling between only selected bits. See, e.g., Siggelkow and
Levinthal (2003); Ethiraj and Levinthal (2004).
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a low score, and high scores are distinguished. Note that none of the qualitative results I

present depend on this transformation, since the transformation preserves the order among

the scores. F̂ (S) is what I mean by score throughout the paper.
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